Bài giảng Xác suất thống kê - Chương 1: Đại cương về Xác suất - Phan Trung Hiếu
-Tập hợp là một khái niệm nguyên thủy, không
có định nghĩa.
I. Bổ túc về tập hợp và giải tích tổ hợp:
-Sự gom góp một số đối tượng lại với nhau
cho ta hình ảnh của tập hợp. Các đối tượng này
trở thành phần tử của tập hợp.
Ví dụ 1: Tập hợp các sinh viên đang học trong
giờ môn XSTK tại phòng A .
ự án. b) Chỉ trúng thầu 1 dự án. c) Trúng thầu ít nhất 1 dự án. 25 Bài 15: Một người săn thỏ trong rừng. Anh ta bắn viên thứ nhất với xác suất trúng thỏ là 1 2 . Nếu bị trượt, anh ta bắn viên thứ hai với xác suất trúng thỏ là 1 3 . Nếu lại trượt nữa, anh ta bắn viên thứ ba với xác suất trúng thỏ là 1 5 . Tính xác suất người thợ săn bắn được thỏ trong cuộc đi săn này. Bài 16: Trong một lô hàng có 100 sản phẩm, trong đó có 20 sản phẩm loại A. Lấy ngẫu nhiên (liên tiếp từng sản phẩm một và không hoàn lại) 3 sản phẩm. Tính xác suất để cả 3 sản phẩm đều là loại A. Bài 17: Một túi có 12 viên bi, trong đó có 3 bi đỏ. Thực hiện 3 lần lấy không hoàn lại, mỗi lần 4 bi. Tính xác suất để trong mỗi lần lấy có 1 bi đỏ. Bài 18: Một hộp có 10 bi trong đó có 2 bi đỏ. Lấy ngẫu nhiên không hoàn lại lần lượt từng bi cho đến khi lấy được 2 bi đỏ thì dừng. Tính xác suất việc lấy bi dừng ở lần thứ 3. Bài 19: Hộp có 4 bi đỏ, 3 bi xanh, 5 bi vàng. Lấy ngẫu nhiên không hoàn lại lần lượt từng bi cho đến khi lấy được bi đỏ thì dừng. a) Tính xác suất việc lấy bi dừng ở lần thứ 4. b) Giả sử việc lấy bi dừng ở lần thứ 4. Tính xác suất trong số bi lấy ra có 2 bi vàng. Bài 20: Một thủ kho có chùm chìa khóa gồm 10 chìa hình thức giống nhau nhưng trong đó chỉ có 3 chìa mở được kho, anh ta mở ngẫu nhiên từng chìa một cho tới khi mở được kho. Tìm xác suất để: a) anh ta mở tới lần thứ 3 thì mở được kho. b) anh ta mở được khóa mà không quá 3 lần mở. Dạng 3: Tính xác suất bằng công thức đầy đủ, công thức Bayes Bài 1: Có 2 máy cùng sản xuất một loại sản phẩm. Tỉ lệ chính phẩm của máy thứ nhất là 0,9; của máy thứ hai là 0,85. Từ một kho chứa 1 3 sản phẩm của máy thứ nhất (còn lại của máy thứ hai), lấy ra 1 sản phẩm để kiểm tra. a) Tính xác suất lấy được phế phẩm. b) Nếu sản phẩm lấy ra là chính phẩm, tính xác suất sản phẩm đó do máy thứ hai sản xuất ra. Bài 2: Một trường tiểu học có 55% học sinh là nam. Trong số học sinh nam có 16% em bị cận thị, tỉ lệ này ở nữ là 15%. a) Tính tỉ lệ học sinh bị cận thị. b) Tính tỉ lệ nữ trong số học sinh bị cận thị. Bài 3: Một công ty bất động sản chuẩn bị bán một số căn hộ. Họ tin rằng, nếu nền kinh tế tiếp tục phát triển thì khả năng bán hết các căn hộ (theo đúng kế hoạch) là 0,7; trong trường hợp ngược lại, họ chỉ có thể bán hết các căn hộ với xác suất là 0,35. Theo dự báo của các chuyên gia kinh tế, xác suất nền kinh tế tiếp tục phát triển là 0,65. Từ những số liệu đó, tính xác suất để công ty bán hết các căn hộ. 26 Bài 4: Một công ty bảo hiểm chia dân cư (đối tượng bảo hiểm) làm 3 loại: ít rủi ro, rủi ro trung bình, rủi ro cao. Theo thống kê cho thấy tỉ lệ dân gặp rủi ro trong 1 năm tương ứng với các loại trên là 5%; 15%; 30% và trong toàn bộ dân cư có 20% ít rủi ro; 50% rủi ro trung bình; 30% rủi ro cao. a) Tính tỉ lệ dân gặp rủi ro trong một năm. b) Nếu một người không gặp rủi ro trong năm thì xác suất người đó thuộc loại ít rủi ro là bao nhiêu? Bài 5: Một đài khí tượng thủy văn muốn xem xét khả năng dự báo thời tiết của mình. Từ số liệu thống kê chỉ ra rằng: xác suất dự báo có nắng trong ngày không mưa là 0,8; có nắng trong ngày mưa là 0,4; xác suất một ngày sẽ không mưa là 0,6. a) Tính xác suất dự báo ngày sẽ có nắng. b) Tính xác suất sẽ là ngày không mưa, biết rằng đã có dự báo là ngày có nắng. Bài 6: Có bốn nhóm xạ thủ tập bắn. Nhóm thứ I có 5 người, nhóm thứ II có 7 người, nhóm thứ III có 4 người và nhóm thứ IV có 2 người. Xác suất bắn trúng đích của mỗi người trong nhóm thứ I, nhóm II, nhóm III và nhóm IV theo thứ tự là 0,8; 0,7; 0,6 và 0,5. Chọn ngẫu nhiên một xạ thủ và xạ thủ này bắn trượt. Hãy xác định xem xạ thủ này có khả năng ở trong nhóm nào nhất? Bài 7: Một người bị nghi là mắc 1 trong 2 bệnh A và B. Theo thống kê thì xác suất mắc bệnh A cao gấp 3 lần xác suất mắc bệnh B. Bệnh viện thực hiện 2 xét nghiệm y học T1 và T2 một cách độc lập cho người đó. Biết rằng nếu có bệnh A thì T1 cho dương tính với xác suất 0,9; còn T2 cho dương tính với xác suất 0,8. Trường hợp có bệnh B thì T1 cho dương tính với xác suất 0,75; còn T2 cho dương tính với xác suất 0,7. Giả sử cả hai xét nghiệm đều dương tính. Tính xác suất người đó mắc bệnh A. Bài 8: Dân cư trong thành phố X có nhóm máu phân bố như sau: Nhóm máu O A B AB Tỉ lệ 25% 40% 25% 10% Dân cư trong thành phố Y có nhóm máu phân bố như sau: Nhóm máu O A B AB Tỉ lệ 45% 40% 10% 5% Biết rằng người có nhóm máu AB có thể nhận máu của bất kỳ nhóm máu nào, còn một người có máu thuộc các nhóm còn lại (A hay B hay O) thì có thể nhận máu của người cùng nhóm với mình hay người có nhóm máu O. Giả sử có một bệnh nhân là dân cư của thành phố X. a) Nếu biết bệnh nhân có nhóm máu B. Tính xác suất để chọn ngẫu nhiên 1 người của thành phố Y có thể truyền máu được cho bệnh nhân. b) Nếu chưa biết nhóm máu của bệnh nhân. Tính xác suất để chọn ngẫu nhiên 1 người của Y có thể truyền máu được cho bệnh nhân. c) Nếu chưa biết nhóm máu của bệnh nhân và một người của thành phố Y đã có thể truyền máu được cho bệnh nhân. Tính xác suất để người cho máu này thuộc nhóm B. Bài 9: Một cặp trẻ sinh đôi có thể do cùng một trứng (sinh đôi thật), hay do hai trứng khác nhau sinh ra (sinh đôi giả). Các cặp sinh đôi thật luôn có cùng giới tính. Đối với cặp sinh đôi giả thì giới tính của mỗi đứa độc lập với nhau và có xác suất 0,5 là con trai. Thống kê cho thấy 34% cặp sinh đôi đều là trai, 30% cặp sinh đôi đều là gái, và 36% cặp sinh đôi có giới tính khác nhau. a) Tìm tỉ lệ cặp sinh đôi thật. 27 b) Chọn ngẫu nhiên 1 cặp sinh đôi thì được 1 cặp có cùng giới tính. Tính xác suất để đó là cặp sinh đôi thật. Bài 10: Một bệnh nhân bị nghi là có thể mắc 3 loại bệnh A, B, C với xác suất tương ứng là 0,3; 0,4; 0,3. Người đó đến khám bệnh ở 4 bác sĩ một cách độc lập. Bác sĩ thứ nhất chẩn đoán bệnh A; bác sĩ thứ hai chẩn đoán bệnh B; bác sĩ thứ ba chẩn đoán bệnh C và bác sĩ thứ tư chẩn đoán bệnh A. Sau khi khám bệnh xong, người bệnh xác định xác suất mắc bệnh A, B, C là bao nhiêu? Biết rằng xác suất chẩn đoán đúng của mỗi ông bác sĩ là 0,6 và chẩn đoán nhầm sang hai bệnh còn lại là 0,2 và 0,2. Bài 11: Có 3 hộp bi. Hộp 1 có 6 bi xanh và 4 bi đỏ. Hộp 2 có 7 bi xanh và 3 bi đỏ. Hộp 3 có 8 bi xanh và 2 bi đỏ. Chọn ngẫu nhiên một hộp rồi từ hộp đó lấy ngẫu nhiên ra 1 bi. a) Tính xác suất để bi lấy ra là bi xanh. b) Tính xác suất để chọn được hộp bi 1, biết rằng bi lấy ra là bi đỏ. Bài 12: Có 3 hộp thuốc. Hộp I có 5 ống tốt và 2 ống xấu. Hộp II có 4 ống tốt và 1 ống xấu. Hộp III có 3 ống tốt. Lấy ngẫu nhiên 1 hộp và từ đó rút ngẫu nhiên 2 ống thuốc. a) Tìm xác suất để được 1 ống thuốc tốt và 1 ống thuốc xấu. b) Tìm xác suất để được 2 ống thuốc tốt. c) Giả sử khi rút ra 2 ống thuốc, ta thấy có 2 ống thuốc tốt. Tìm xác suất để các ống đó ở hộp II. Bài 13: Có 20 kiện hàng, trong đó có 8 kiện loại I, 7 kiện loại II và 5 kiện loại III, mỗi kiện có 10 sản phẩm. Số phế phẩm có trong mỗi kiện loại I, II và III lần lượt là 1, 3 và 5. Lấy ngẫu nhiên 1 kiện, rồi từ kiện đó lấy ngẫu nhiên ra 1 sản phẩm. a) Tính xác suất sản phẩm lấy ra là phế phẩm. b) Biết sản phẩm lấy ra là phế phẩm, tính xác suất kiện lấy ra là loại II. Bài 14: Có 5 hộp bi, trong đó có 3 hộp loại I và 2 hộp loại II. Hộp loại I có 10 viên bi, trong đó có 6 bi trắng. Hộp loại II có 10 viên bi, trong đó có 4 bi trắng. Chọn ngẫu nhiên 1 hộp rồi từ hộp đó lấy ngẫu nhiên ra 2 bi. a) Tính xác suất để lấy được 2 bi trắng. b) Tính xác suất để chọn được hộp bi II, biết rằng 2 bi lấy ra là 2 bi trắng. Bài 15: Có 2 lô hàng, lô hàng I có 3 sản phẩm tốt và 4 sản phẩm xấu, lô hàng II có 5 sản phẩm tốt và 3 sản phẩm xấu. Lấy ngẫu nhiên 1 sản phẩm từ lô I bỏ vào lô II, rồi lấy ngẫu nhiên 1 sản phẩm từ lô II bỏ ra ngoài. Tính xác suất để sản phẩm lấy ra lần 2 là sản phẩm xấu. Bài 16: Có 2 hộp bi. Hộp 1 có 6 bi trắng và 4 bi đỏ. Hộp 2 có 5 bi trắng và 5 bi đỏ. Lấy ngẫu nhiên 2 bi từ hộp 1 bỏ sang hộp 2. Sau đó lấy ngẫu nhiên ra 1 bi từ hộp 2. a) Tìm xác suất lấy ra được bi đỏ. Giả sử lấy được bi đỏ. Tìm xác suất: b) Bi đỏ đó là của hộp 1. c) Hai bi bỏ từ hộp 1 sang hộp 2 đều là đỏ. Bài 17: Có 2 hộp bi. Hộp I chứa 3 bi trắng và 3 bi xanh. Hộp II chứa 6 bi trắng và 4 bi xanh. Lấy ngẫu nhiên 4 bi từ hộp I bỏ vào hộp II và sau đó lại lấy ngẫu nhiên từ hộp II ra 1 bi. Tìm xác suất viên bi lấy ra là viên bi xanh. Bài 18: Có 2 lô sản phẩm. Lô I có 6 chính phẩm và 4 phế phẩm. Lô II có 5 chính phẩm và 5 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm và từ lô II lấy ngẫu nhiên ra 1 sản phẩm. Sau đó, chọn ngẫu nhiên 1 sản phẩm từ 3 sản phẩm đó. Tìm xác suất chọn được phế phẩm. 28 Bài 19: Có 2 lô hàng: Lô I có 6 sản phẩm loại A và 4 sản phẩm loại B; Lô II có 3 sản phẩm loại A và 7 sản phẩm loại B. Từ mỗi lô lấy ngẫu nhiên ra 1 sản phẩm đem bán. Các sản phẩm còn lại ở 2 lô được dồn chung lại thành lô III. Từ lô III lấy ngẫu nhiên ra 1 sản phẩm. Tính xác suất đó là sản phẩm loại A. Bài 20: Có 3 lô hàng giống nhau, mỗi lô có 10 sản phẩm loại A và 12 sản phẩm loại B. Lấy 1 sản phẩm ở lô I bỏ sang lô II, rồi lấy 1 sản phẩm ở lô II bỏ sang lô III, sau đó lấy 1 sản phẩm ở lô III bỏ ra ngoài. Tìm xác suất để sản phẩm lấy ra sau cùng là sản phẩm loại A. Bài 21: Có 2 lô sản phẩm. Lô I có 7 chính phẩm và 3 phế phẩm. Lô II có 5 chính phẩm và 5 phế phẩm. Từ lô thứ nhất bỏ sang lô thứ hai 1 sản phẩm, sau đó từ lô thứ hai bỏ sang lô thứ nhất 1 sản phẩm, sau đó từ lô thứ nhất lấy ra 1 sản phẩm. Tìm xác suất để lấy được chính phẩm. Bài 22: Có 2 xạ thủ cùng bắn vào một con thú, mỗi người bắn một viên đạn. Xác suất bắn trúng đích của xạ thủ thứ nhất, thứ hai lần lượt là 0,6 và 0,7. Nếu bị trúng 1 viên đạn thì xác suất để con thú bị tiêu diệt là 0,5; còn nếu bị trúng 2 viên đạn thì con thú chắc chắn bị tiêu diệt. a) Tính xác suất con thú bị tiêu diệt. b) Biết rằng con thú bị tiêu diệt. Tính xác suất con thú bị trúng 1 viên đạn.
File đính kèm:
- bai_giang_xac_suat_thong_ke_chuong_1_dai_cuong_ve_xac_suat_p.pdf