Bài giảng Computer graphics and virtual reality - Bài 6: Mầu sắc trong đồ họa – Color model - Lê Tấn Hùng

Mô hình mầu - color model

z Mô hình mầu là hệ thống có quy tắc cho việc tạo khoảng mầu từ tập

các mầu cơ bản.

z Khoảng mầu mà chúng ta tạo ra với tập các mầu cơ bản goi là gam

mầu hệ thống đó system’s color gamut.

z Mỗi mô hình mầu có khoảng mầu hay gam mầu riêng gamut (range)

của những mầu mà nó có thể hiển thị hay in.

z Mỗi mô hình mầu được giới hạn khoảng của phổ mầu nhìn được.

Gam mầu hay khoảng còn được gọi là không gian mầu "color space".

Ảnh hay đồ hoạ vector có thể nói: sử dụng không gian mầu RGM hay

CMY hay bất cứ không gian mầu nào khác

z Một số ứng dụng đồ hoạ cho phép người dùng sử dụng nhiều mô

hình mầu đồng thời để soạn thảo hay thể hiện đối tượng hình học.

Ðiểm quan trọng là hiểu và để chọ đúng mô hình cần thiết cho công

pdf8 trang | Chuyên mục: Đồ Họa Máy Tính | Chia sẻ: yen2110 | Lượt xem: 333 | Lượt tải: 0download
Tóm tắt nội dung Bài giảng Computer graphics and virtual reality - Bài 6: Mầu sắc trong đồ họa – Color model - Lê Tấn Hùng, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
đây là bé nhất. 
ƒKhông sử dụng sơ đồ mầu xyY như là ánh xạ cho việc chỉ ra quan hệ giữa các 
mầu.
ƒSơ đồ là là không gian phẳng giới hạn bởi đường cong mà phép ánh xạ quan 
hệ mầu của không gian quan sát được bị vặn méo.
ƒ Vid dụ: mầu không thuộc khoảng xanh lục sẽ thuộc phần đỏ hay tím.
•X = x(Y/y) , Y = Y , Z = (1 - x - y)(Y/y) 
Kü thuËt §å ho¹28
Ưu điểm
z Cung cấp 
z Chuẩn chuyển đổi giá trị mầu mà độ 
bão hoà thành thông tin của các mô 
hình mầu khác.
z 1 cách định nghĩa và xác định trực 
quan và đơn giản về mầu bù thông 
qua giải thuật hình học có thể tính 
toán.
z Định nghĩa tự nhiên về sắc thái tint 
và đơn giản hoá việc định lượng giá 
trị của thuộc tính này
z Cơ sở cho định nghĩa gam mầu 
(space) cho màn hình hay thiết bị 
hiển thị. Gam của màn hình RGB 
ể ằ ồ ầ
Kü thuËt §å ho¹29
CIE-LUV
z Để hiệu chỉnh điều đó, sơ đồ tỉ lệ mầu đồng dạng-uniform chromaticity 
scale (UCS) được đưa ra. 
z Sơ đồ UCS sử dụng công thức toán để chuyển đổi giá trị XYZ hay tọa 
độ x,y thành 1 cặp các giá trị mới (u,v) biểu diễn 1 cách trực quan và 
chính xác mô hình 2 chiều
z 1960, CIE chấp nhận loại UCS vày với tên 1960 CIE u,v Chromaticity
•Trong sơ đồ mỗi đoạn thẳng mô tả sự khác biệt về 
mầu sắc tương đồng với tỉ lệ bằng nhau.
•Khoảng cách giữa 2 đầu của mỗi đoạn thẳng được 
cảm nhận là như nhau theo CIE 1931 2° standard 
observer. 
• Chiều dài đoạn thẳng là biến thiên và có thể rất 
lớn phụ thuộc vào vị trí cả chúng trên biểu đồ 
•Sự khác biệt giữa chiều dài của đoạn thẳng cũng 
chính là sự biến dạng méo giữa các phần của đồ 
thị.
Kü thuËt §å ho¹30
CIE u,v Chromaticity Diagram: 
z So sánh UCS với sơ đồ 1931 
diagram trước đó,khác biệt là sự 
kéo dài vùng mầu lam-đỏ blue-
red của sơ đồ và sưh thay đổi vị 
trí của điểm chói trắng đẫn đến 
giảm trông thấy sự khác biệt của 
vùng mầu lục. 
z Ty nhiên điều đó vẫn không thoả 
mãn cho đến năm1975,
z 1976 CIE đưa ra sự sửa đổi của 
sơ đồ u,v thay bằng 2 giá trị mới 
(u',v') bằng cách nhân v với 1.5. 
z Sơ đồ mới có dạng chuyển đổi.
– u' = u
CNTT – DHBK Hanoi
8682595
Hunglt@it-hut.edu.vn
6
Kü thuËt §å ho¹31
CIE u’v’
z Ty không phải là toàn diện nhưng sơ đồ u',v' đưa ra sự đồng dạng tốt 
hơn hẳn so với u,v. 
z đoạn thẳng trong sơ đồ u',v' cũng có hình dạng giông như trong x,y 
nhưng quan sát cho thấy chúng gần như đồng dạng với nhau. 
z Một điểm khác biệt tạo để tạo nên mô hình CIELUV là sự thay thang 
đo giá trị độ sáng Y bằng thang đo L*. 
z Thang đo của Y là tỉ lệ đồng dạng của độ sáng với các bước thay đổi 
là bằng nhau.
z Tuy nhiên tỉ lệ này chưa thoả đáng khi biểu diễn sự khác biệt tương 
đương về độ sáng. 
Kü thuËt §å ho¹32
CIE LUV
z Độ sáng Y được cho là không khác biệt với giá trị là 
cường độ là khoảng là 70 hay 75. Về con số sự khác biệt 
là 5 tuy chúng ta không phân biệt được sự khác biệt giữa 
giá trị thấp hay cao cũng như điểm nằm giữa. 
z Sử dụng công thức toán, giá trị Y chuyển thành giá trị khác 
xấp xỉ và đồng dạng để chỉ ra sự khác biệt 1 cách dễ dàng. 
z Thang đo mới L*, gần giống với thang đo hệ thống 
Munsell. Sự khác biệt rõ ràng nhất là L* sử dụng thang đo 
0-100, trong khi Munsell's sử dụng thang đo 0-10. 
z Thang đo độ sáng L* được sử dụng trong CIELAB cũng 
như CIELUV. Giá trị của CIELUV tương tự CIEXYZ và CIE 
xyY là tính độc lập thiết bị và vì vậy ore not restrained by 
gamut.
z Việc phát triển theo CIEXYZ và xyY sẽ cho phép biểu diễn 
Kü thuËt §å ho¹33
CIE-LAB
z CIELAB là hệ thống thứ 2 được CIE 
chấp nhận năm 1976 như là mô hình 
mầu để biểu diễn tốt hơn giá trị mầu 
đồng dạng. 
z CIELAB là hệ thống mầu đối nghịch dựa 
trên hệ thống của Richard Hunter [1942] 
gọi là L, a, b.
z Sự đối mầu được phát hiện ra vào 
khoảng giữa năm 60s hat: tại 1 vị trí giữa 
thần kinh thị giác và não hay võng mạc 
sự kích thích mầu được chuyển thành sự 
khác biệt gữa tối và sáng (light and dark) 
giữa đỏ và lục( red and green), giữa lam 
và vàng( blue and yellow).
CIELAB biể diễ á iá t ị à t ê 3
Kü thuËt §å ho¹34
CIE - LAB
z Trục mầu dựa theo nguyên lý: mầu không thể cả 
đỏ lẫn lục hay lam và vàng vì chúng là mầu đối lẫn 
nhau. Trên mỗi trục giá trị chạy từ dương đến âm. 
– Trên trục a-a', giá trị dương chỉ ra tổng của mầu đỏ trong khi đó 
âm chỉ ra tổng mầu xanh.
– Trên trục b-b', mầu vàng dương và lam âm.
– Trên cả 2 trục zero cho mầu xám 
z Như vậy giá trị chỉ cần 2 trục mầ còn độ sáng hay mức độ 
xám sử dụng trục (L*), khác biệt hẳn với RGB, CMY or 
XYZ độ sáng phụ thuộc vào tổng tương quan của các 
kênh mầu. 
z CIELAB và desktop color. 
– Độc lập thiết bị (unlike RGB and CMYK), 
– Là mô hình mầu cơ sở cho Adobe PostScript (level 2 and level 3)
– được dùng là mô hình quản lý mầu độc lập thiết bị cho ICC 
(International Color Consortium 
Kü thuËt §å ho¹35
R
G
B
Monitor Gamut
Printer Gamut
common monitor only
printer only
Gamut Comparisons
Kü thuËt §å ho¹36
White
common gamut scale gamut clip
Gamut Handling
CNTT – DHBK Hanoi
8682595
Hunglt@it-hut.edu.vn
7
Kü thuËt §å ho¹37
XYZ → RGB Conversion
z Ultimate goal: select most appropriate RGB 
values to match the hue and luminance of a 
spectral source.
380 780
Φλ
λ
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
=
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
56.0
32.0
11.0
B
G
R
Kü thuËt §å ho¹38
Φ(λ) → XYZ Conversion
z The first stage is to determine the XYZ 
tristimulus values required to match the 
spectral source:
z Tristimulus curves available in tabular form, 
so approximate integral with a summation:
∫ Φ= 780
380
)()( λλλ dxX ∫ Φ=
780
380
)()( λλλ dyY ∫ Φ= 780
380
)()( λλλ dzZ
( ) λλ ΔΦ≈∑
=
)(][~
80
0
iixX
i
( ) λλ ΔΦ≈∑
=
)(][~
80
0
iiyY
i ( ) λλ ΔΦ≈∑
=
)(][~
80
0
iizZ
i
5,40380)( =Δ+= λλ iiwhere
Kü thuËt §å ho¹39
RGB → XYZ Conversion
z Now determine the linear transformation which 
maps RGB tristimulus values to XYZ values.
z This matrix is different for each monitor (i.e. 
different monitor phosphors).
z Monitors have a finite luminance range (typically 
100 cd/m2), whereas XYZ space is unbounded
⇒ Need to be concerned with the display of bright 
sources (e.g. the sun)
– tone mapping: reproducing the impression of 
brightness on a device of limited luminance 
bandwidth. Kü thuËt §å ho¹40
RGB → XYZ Conversion
z Recall linear relationship between XYZ and RGB 
spaces:
z Linear system can be solved if positions of 3 
colours are known in both spaces.
z Sometimes manufacturers provide tristimulus 
values for monitor phosphors = (Xr, Yr, Zr) (Xg, 
Y Z ) (Xb Yb Zb)
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
=
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
B
G
R
aaa
aaa
aaa
Z
Y
X
333231
232221
131211
Kü thuËt §å ho¹41
RGB → XYZ Conversion
z Solution of the linear system:
z Note:
z  and similarly for G = 1 and B = 1.
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
=
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
B
G
R
ZZZ
YYY
XXX
Z
Y
X
bgr
bgr
bgr
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
=
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
⇒
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
=
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
r
r
r
Z
Y
X
Z
Y
X
B
G
R
0
0
1
Kü thuËt §å ho¹42
XYZ → RGB Conversion
z The opposite transformation is given by the 
inverse of the original RGB A XYZ matrix:
z We can thus determine an RGB value associated 
with the XYZ value determined earlier from Φ(λ)
XYZXYZRGBRGB
RGBXYZRGBXYZ
CMC
CMC
1−
→
→
=
=
CNTT – DHBK Hanoi
8682595
Hunglt@it-hut.edu.vn
8
Kü thuËt §å ho¹43
XYZ → RGB Conversion
z Usually XYZ tristimulus values for each phosphor 
not provided.
z Manufacturers provide the chromaticity co-
ordinates of the phosphors and the whitepoint
(colour when R = G = B = 1):
z  finally we need to know the luminance of the 
whitepoint given as YW
),(),(),(),( wwbbggrr yxyxyxyx
rrrrrrrrrr
r
r
rrrrr
EyxZEyYExX
E
XxZYXE
)1(
Let
−−===⇒
=⇒++=
Kü thuËt §å ho¹44
XYZ → RGB Conversion
z Similar conditions hold for (Xg, Yg, Zg) and (Xb, 
Yb, Zb)
z Therefore the only unknowns are Er, Eg and Eb
z  but we also require that:
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
−−−−−−
=
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
B
G
R
EyxEyxEyx
EyEyEy
ExExEx
Z
Y
X
bbbgggrrr
bbggrr
bbggrr
)1()1()1(
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
=
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
1
1
1
M
Z
Y
X
w
w
w
Kü thuËt §å ho¹45
XYZ → RGB Conversion
z First we need to determine (Xw, Yw, Zw) given 
(xw, yw, Yw): 
( )
( )
w
w
www
w
w
ww
wwwww
www
w
w
w
w
www
www
w
w
y
YyxZ
y
YxX
ZYXxX
ZYX
Xx
y
YZYX
ZYX
Yy
−−==∴
++=⇒++=
=++⇒++=
1 also and
Kü thuËt §å ho¹46
XYZ → RGB Conversion
z To determine values for Er, Eg and Eb we 
observe that
z  and similarly for Yw and Zw leading to a 
new linear system in no unknowns therefore 
we can solve for Er, Eg and Eb:
bbggrrbgrw
w
w
w
g
g
g
g
g
g
r
r
r
ExExExXXXX
Z
Y
X
Z
Y
X
Z
Y
X
Z
Y
X
WBGR
++=++=∴
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
=
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
+
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
+
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
=++ then if
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
−−−−−−
=
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
b
g
r
bbggrr
bgr
bgr
w
w
w
E
E
E
yxyxyx
yyy
xxx
Z
Y
X
)1()1()1(
Kü thuËt §å ho¹47
Chuyển đổi không gian mầu
Color Spaces
z Công thức chuyển đổi 
z C2 = M-12 M1 C1
z Mầu RGB của màn hình 2 
tương ứng với RGB của 
màn hình 1 theo công thức 
chuyển đổi
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
=
⎥⎥
⎥
⎦
⎤
⎢⎢
⎢
⎣
⎡
B
G
R
ZZZ
YYY
XXX
B
G
R
BGR
BGR
BGR
'
'
'
Kü thuËt §å ho¹48
Sharing colours between monitors
z If we wish to guarantee that a colour on monitor 
1 looks the same as on monitor 2 (assume the 
colour lies within the gamut of both monitors) we 
use the RGB→XYZ conversion matrix M.
z Different RGB values may be required for a 
match with the colour on each monitor (call these 
C1 and C2)
z Each monitor has its own conversion matrix 
(denote by M1 and M2)
z Therefore:
11
1
22 CMMC
−=

File đính kèm:

  • pdfbai_giang_computer_graphics_and_virtual_reality_bai_6_mau_sa.pdf
Tài liệu liên quan