Nghiên cứu Didactic về khái niệm hình và hình vẽ biểu diễn trong hình học
Tóm tắt
Bài báo này trình bày một số quan điểm của các nhà Didactic Toán trên hai đối tượng của Hình học là
"hình vẽ biểu diễn" và "hình", trong tiếng Anh là "drawing" và "figure", hay trong tiếng Pháp là
"dessin" và "figure". Hơn nữa, bài báo cũng đề cập đến một số đối tượng khác liên quan đến hai đối
tượng trên như "mô thức hình học" và "hình vẽ hình học".
một đối tượng tư duy không thể tiếp cận được. Khi đó, hình vẽ biểu diễn là đối tượng hình học mà học sinh làm việc trên đó. Học sinh Hình 5 NGHIÊN CỨU DIDACTIC VỀ KHÁI NI M HÌNH VÀ HÌNH VẼ BIỂU DIỄN TRONG HÌNH HỌC 36 trước hết trích ra các tính chất bằng tri giác, sau đó dẫn đến việc sử dụng các dụng cụ hình học để kiểm chứng các giả thuyết được phát biểu. Do đó, các hoạt động hình học được thực hiện trực tiếp trên các hình vẽ hình học mà không tham chiếu đến một đối tượng hình học lý thuyết. Mục đích chính của các hoạt động này là cho phép học sinh làm quen với các đối tượng của mặt phẳng và của không gian và chuyển dần dần từ một hình học trong đó các đối tượng và các tính chất của chúng được kiểm tra bằng tri giác sang một hình học trong đó họ nhờ đến các công cụ và kiến thức về một số tính chất của đối tượng hình học lý thuyết. Chẳng hạn, ở bài tập 13, trang 79, Sách giáo khoa Toán 6, tập hai [18], học sinh được yêu cầu đo các góc , , ở hình 6: Việc xác định số đo của ba góc trong tam giác IKL được học sinh thực hiện bằng cách sử dụng thước đo độ thao tác trực tiếp trên hình vẽ biểu diễn để đo các góc. Trong trường hợp này, đối với học sinh, hình vẽ biểu diễn tam giác IKL được xem là đối tượng hình học và không được xem là hình vẽ biểu diễn cho đối tượng hình học lý thuyết. Trong tất cả các trường hợp như trên, đối tượng làm việc là hình vẽ, không có bất cứ sự mã hóa cũng như mô tả suy lý logic nào cho phép xem xét một đối tượng hình học lý thuyết. Tuy nhiên, việc đưa vào mã hóa không có nghĩa là người ta cần quan tâm đến đối tượng hình học lý thuyết. Chẳng hạn, trong một bài tập được trích ra từ Sách giáo khoa Toán của Pháp Maths CM1 [5, tr.79], tương đương lớp 4 của Việt Nam, học sinh được yêu cầu dựng lại một hình với các số đo thực trên giấy kẻ ô lưới 1cmx1cm với các dụng cụ hình học từ một sơ đồ vẽ bằng tay cho trước trên đó có ghi số đo của các cạnh (Hình 7). Sơ sồ trong hình 7 có thể được diễn giải như một biểu diễn của một đối tượng vật lý hay một đối tượng lý thuyết, nhưng nó không được quan tâm trong bài tập này. Hoạt động của học sinh trong trường hợp này là giải mã sơ đồ trong 7 để thực hiện dựng hình. Việc dựng hình ở đây được xem xét đơn giản là tạo ra một hình vẽ hình học tương ứng với mô tả bằng mã hóa. Do đó, đối tượng làm việc ở đây là hình vẽ mà trên đó học sinh cần đo độ dài các cạnh, sử dụng thước êke, 3. Hình 3.1. Hình là hình vẽ biểu diễn Duval định nghĩa hình theo nghĩa vết vẽ vật chất trên trang giấy, hay nói cách khác, Duval sử dụng từ hình cho cái mà chúng ta gọi là hình vẽ biểu diễn hay hình vẽ hình học, đối tượng hình học hay biểu diễn của một đối tượng hình học lý thuyết. 3.2. Hình là đối tượng hình học lý thuyết Theo quan điểm cổ điển của Arsac và Parzysz, từ hình để chỉ một số đối tượng hình học lý thuyết. "chúng tôi dành riêng (là một quy ước, có thể tranh luận như mọi quy ước Hình 6 Hình 7 NGUYỄN ÁI QUỐC 37 khác) từ HÌNH cho bản thể hình học, trong khi chúng tôi sử dụng từ HÌNH VẼ BIỂU DIỄN cho một biểu diễn đồ họa (mặt phẳng) của hình này." [15, tr.14] Tuy nhiên, trong thực tế, từ hình được sử dụng để chỉ một đối tượng phức tạp hơn các đối tượng của hình vẽ biểu diễn hay của đối tượng hình học lý thuyết. 3.3. Hình là lớp tương đương các hình vẽ biểu diễn Arsac, trong một số trường hợp, xem xét hình như một lớp tương đương các hình vẽ biểu diễn cùng một đối tượng hình học lý thuyết. Chính là cái mà Arsac gọi là quan điểm toán học trên hình. "Một hình xuất hiện như một lớp tương đương: cụ thể, hai hình vẽ biểu diễn cùng một hình khi chúng đồng dạng và đẳng cự (tùy theo loại thuộc tính mà chúng ta muốn nghiên cứu) hay thậm chí chúng tương ứng trong một phép biến đổi affine." [2, tr.174] Trong trường hợp của hai hình vẽ biểu diễn trong hình 8, không tồn tại một phép biến đổi affine biến hình vẽ biểu diễn này thành hình vẽ biểu diễn kia. Tuy nhiên, nếu xét từ một quan điểm khác, chúng biểu diễn cùng một đối tượng hình học : một tứ giác bất kỳ và đường tròn ngoại tiếp của nó. Vậy chúng ta có thể mở rộng định nghĩa ở trên của Arsac và xem xét hình như tập hợp tất cả các hình vẽ biểu diễn của một đối tượng hình học được định nghĩa bằng một phát biểu mô tả các đối tượng, các thuộc tính, các mối quan hệ: một tứ giác bất kỳ, nghĩa là không có góc vuông, không có hai cạnh song song và đường tròn ngoại tiếp của nó. Labord và Capponi phát triển khái niệm lớp tương đương theo cách phức tạp hơn: đưa khái niệm hình vào trong tam giác cái biểu đạt – cái được biểu đạt – cái quy chiếu. Hình vẽ biểu diễn là cái biểu đạt, sự biểu diễn; đối tượng hình học lý thuyết là quy chiếu, đối tượng được biểu diễn. "Hình hình học bao gồm sự ghép cặp một quy chiếu cho trước với tất cả các hình vẽ biểu diễn, do đó nó được định nghĩa như tập hợp các cặp được hình thành từ hai từ, từ thứ nhất là quy chiếu, từ thứ hai là một trong các hình vẽ biểu diễn; từ thứ hai được lấy từ trong không gian tất cả các hình vẽ biểu diễn có thể của quy chiếu. Trong sự chấp nhận này, từ hình hình học phản chiếu việc thiết lập một quan hệ giữa một đối tượng hình học và các biểu diễn có thể có của nó. Trong cách tiếp cận này, các mối liên quan giữa hình vẽ biểu diễn và quy chiếu của nó được xây dựng bởi một chủ thể, người đọc hay người tạo ra hình vẽ biểu diễn, bao gồm cái được biểu đạt của hình hình học liên kết với chủ thể này. Cái được biểu đạt này tương ứng với cái mà Fischbein (1993) gọi là khái niệm hình." [12, tr.168] 4. Kết luận Việc làm rõ các quan điểm về hình và hình vẽ biểu diễn cũng như mối quan hệ giữa chúng là điều cần được quan tâm trong công tác đào tạo giáo viên Toán bậc phổ thông từ tiểu học đến trung học phổ thông. Sự phân biệt giữa hai đối tượng hình và hình vẽ biểu diễn mở ra một miền rộng lớn cho các nghiên cứu liên quan đến chúng. Các đặc trưng của mối quan hệ giữa hai đối tượng này trong hình học phẳng đã được nhiều nhà didactic toán làm rõ trong các công trình nghiên cứu của họ. Hình 8 NGHIÊN CỨU DIDACTIC VỀ KHÁI NI M HÌNH VÀ HÌNH VẼ BIỂU DIỄN TRONG HÌNH HỌC 38 Thực tế dạy học cho thấy trong hình học không gian, mối quan hệ giữa hình và hình vẽ biểu diễn rất phức tạp vì vấn đề biểu diễn một đối tượng hình học lý thuyết của không gian 3D trong không gian 2D được thực hiện qua phép chiếu song song và việc chọn lựa một môi trường làm việc trên đó, môi trường giấy-bút chì hay máy tính, sẽ ít nhiều ảnh hưởng đến mối quan hệ này. TÀI LIỆU THAM KHẢO 1. Arsac, G., (1989): La construction du concept de figure chez des éleves de 12 ans. Actes de la 13 ème conference PME. Paris. P85-92. Artigue M., Rogalski J. et Vergnaud G. 2. Arsac, G., & al. (1992): Initiation au raisonnement déductif au college. Ed. Presses Universitaires de Lyon. 3. Arsac, G., (2004): Bases élementaires de l’étude de la démonstration mathematique. Séminaire de Didactique, Histoire et Épistemologie des Mathematiques, des Sciences et des Techniques du PREMST. IUFM de Lyon. 28 janvier 2004. 4. Berthelot, R., & Salin, M. (1992): Espace et géométrie dans la scolarite obligatoire. Thèse de doctorat. Université de Bordeaux 1. 5. Charney, R., & Combier, G., & Dussuc M. P. (2003): Cap Maths. CM1. Ed. Hatier. 6. Duval, R. (1994): Les differents fonctionnements d’une figure dans une démarche géometrique. Reperes IREM. n 0 17. P121-138. Ed. IREM de Grenoble. 7. Duval, R. (1995): Sémiosis et pensée humaine. Ed. Springer. Berne. 8. Fischbein, E. (1993): The theory of figural concepts. Educational Studies in Mathematics. Vol. 24. n 0 2. P139-162. Ed. Kluwer Academic Publishers. 9. Houdement, C., & Kuzniak, A. (1999.3): Géométrie et paradigmes géométriques. Petit x. n 0 51. P5-21. Ed. IREM de Grenoble. 10. Houdement, C., & Kuzniak, A. (2000): Formation des maitres et paradigmes géométriques. Recherches en Didactique des Mathematiques. Vol. 20. n 0 1. P 89-116. Ed. La Pensée Sauvage. Grenoble. 11. Kuhn, T. (1977). The Essential Tension: Selected Studies in Scientific Tradition and Change. Chicago: University of Chicago Press. 12. Labord, C., & Capponi, B. (1994): Cabri- Géometre constituant d’un milieu pour l’apprentissage de la notion de figure géometrique. Recherches en Didactique des mathematiques. Vol. 14. n 0 1.2. p165-210. Ed. La Pensée Sauvage. Grenoble. 13. Labord, C., & Capponi, B. (1995): Modelisation à double sens. Actes de la 8 ème Ecole d’éte de Didactique des mathematiques. Saint Sauves d’Auvergne. Aout 1995. Ed. IREM de Clemont-Ferrand. 14. Parzysz, B. (1988): "Knowing" vs "seeing". Problems of the plane representation of space geometry figures. Educational Studies in Mathematics. n 0 19. P79-92. Ed. Kluwer Academic Publishers. 15. Parzysz, B. (1989): Représentations planes et enseignement de la géométrie de l’espace au lycée. Contribution à l’étude de la relation voir/savoir. Thèse de doctorat. Université Paris-7. Ed. IREM Paris-7. 16. Parzysz, B. (2002): Articulation entre perception et déduction dans une démarche géometrique en PÉ. Actes du 28 ème colloque Inter-IREM des formateurs et professeurs chargés de la formation des maitres. Tours. Mai 2001. P.99-110. Ed. Presses Universitaires d’Orléans. 17. Parzysz, B. (2004): Preuve perceptive ou démonstration? Le rapport des PE1 à la géometrie, étudie à travers leur discours "méta". Actes du 31 ème colloque Inter-IREM des formateur et professeurs charges de la formation des maitres. Foix. Mai 2004. Ed. IREM de Toulouse. 18. Phan Đức Chính, Tôn Thân, Phạm Gia Đức (2012), Toán 6 – tập hai, Nxb Giáo Dục Việt Nam. Ngày nhận bài: 02/9/2017 Biên tập xong: 15/10/2017 Duyệt đăng: 20/10/2017
File đính kèm:
- nghien_cuu_didactic_ve_khai_niem_hinh_va_hinh_ve_bieu_dien_t.pdf