Fundamentals of Electric Circuit - Chapter 8: Second-order Circuits
I. Introduction.
II. Finding initial and final values.
III. The source free series/parallel RLC circuits.
IV. Step response of a series/parallel RLC circuits.
V. General second-order circuits.
VI. Applications.
R L LC 1 0 2,5 2 1 2 s s s 12 2 1,2 0 2 1 4 R1 = 5Ω 1Ω For t > 0: t t t t f v t v A e A e A e A e 4 4 1 2 1 2 ( ) 24 At t = 0: v A A A A1 2 1 2(0) 24 4 20 t t dv t i t C C A e A e i C A A dt 4 1 2 1 2 ( ) ( ) 4 (0) 4 4 t tv t e e V4 4 ( ) 24 16 3 t t dv i t C e e A dt 44( ) 4 3 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R 1 2 4 V 1 H L 0,5F C R 2 21 Chapter 8: Second-order circuits IV. Step response of a series/parallel RLC circuit IV.1. Step response of a series RLC circuit Ex 8.5: Find v(t) and i(t) for t > 0 in the case of the different values of R1 = 5Ω, 4Ω, 1Ω i A v i V R R 1 2 24 (0) 4,5 ; (0) 1. (0) 4,5 i t = 0 - + v For t = 0: R L LC 1 0 2 2 1 2 R1 = 4Ω 1Ω For t > 0: t t f v t v A A t e A A t e 2 2 1 2 1 2 ( ) ( ) 24 ( ) At t = 0: v A A1 1(0) 24 4,5 19,5 t dv t i t C C A tA A e i C A A A dt 2 1 2 2 1 2 2 ( ) ( ) 2 2 (0) 2 4,5 57 tv t t e V2( ) 24 19,5 57 t dv i t C t e A dt 2( ) 4,5 28,5 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R 1 2 4 V 1 H L 0,5F C R 2 22 Chapter 8: Second-order circuits IV. Step response of a series/parallel RLC circuit IV.1. Step response of a series RLC circuit Ex 8.5: Find v(t) and i(t) for t > 0 in the case of the different values of R1 = 5Ω, 4Ω, 1Ω i A v i V R R 1 2 24 (0) 12 ; (0) 1. (0) 12 i t = 0 - + v For t = 0: R L LC 1 0 0,5 2 1 2 R1 = 1Ω 1Ω For t > 0: tv t A t A t e 0,5 1 2 ( ) 24 ( cos1,936 sin1,936 ) At t = 0: v A A1 1(0) 24 12 12 t t dv t e A t A t e A t A t dt 0,5 0,5 1 2 1 2 ( ) ( 1,936 sin1,936 1,936 cos1,936 ) 0,5 cos1,936 sin1,936 t t v t t e V 0,5 0 0 ( ) 24 (21,694sin 12cos ) ti t t t e A0,50 0( ) (3,1sin 12cos ) s j2 2 1,2 0 0,5 1,936 dv i A A A dt C 2 1 2 (0) (0) 1,936 0,5 48 21,694 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R L C 23 Chapter 8: Second-order circuits IV. Step response of a series/parallel RLC circuit IV.2. Step response of a parallel RLC circuit i t = 0 - + V Applying KCL at the top node for t > 0 IS n n f f i t natural response i t i t i t i t forced response ( ) : ( ) ( ) ( ) ( ) : di v L Sdt S Iv dv d i di i i C I R dt dt RC dt RC LC 2 2 1 s t s t S i t I A e A e1 2 1 2 ( ) Over damped: tSi t I A A t e1 2( ) Critically damped: tS d di t I A t A t e1 2( ) cos sin Under damped: A1, 2: determine from the initial conditions: i(0), di(0)/dt Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R 2 R 1 2 0 H L 8mF C 30u(-t)V 24 Chapter 8: Second-order circuits IV. Step response of a series/parallel RLC circuit IV.2. Step response of a parallel RLC circuit i t = 0 - + V Ex 8.6: Find i(t), iR(t) for t > 0 4A i A R di v v V R R dt L 1 1 2 (0) 4 (0) (0) (0) 30 15 0,75 R R R R R 1 2 1 2 10 t t f sRC s i t I A e A e s LC 12 2 11,978 0,5218 1,2 0 1 2 2 0 1 6,25 11,9782 ( ) 1 0,5218 2,5 iR For t < 0: For t > 0: We have a parallel RCL circuit with current source At t = 0: i A A A A A di AA A dt 1 2 1 2 1 21 2 (0) 4 4 0.0655 (0) 0.065511,978 0,5218 0,75 t ti t e e A0.5218 11.978( ) 4 0.0655( ) t t R di i t L e e A dt 11,978 0,52181( ) 0,785 0,0342 20 20Ω 20Ω Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 25 Chapter 8: Second-order circuits V. General second order circuits Give a second order circuit, the step response x(t) (current or voltage) can be determined by taking the following 5 steps: Determine the initial conditions x(0) and dx(0)/dt and the final value x(∞) Find the natural response xn(t) (with 2 unknown constants) by turning off independent sources and applying KCL and KVL. Obtain the forced response as: xf(t) = x(∞) The total response is the sum of the natural response and forced response x(t) = xn(t) + xf(t) Determine the 2 unknown constants by imposing the initial conditions x(0) and dx(0)/dt. Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 26 Chapter 8: Second-order circuits V. General second order circuits Ex 8.7: Find the complete response v and i for t > 0. Applying KCL: 1 2 V 0,5F C R 2 1 H L R 1 2Ω 4Ω i t = 0 Find the initial and final values: v V v v V i i i ( 0) 12 ( 0) ( 0) 12 ( 0) 0 ( 0) ( 0) 0 C C C iv dv i i i A V s R dt C 2 ( 0)( 0) ( 0) ( 0) ( 0) ( 0) 6 12 / f i A v i V v t R R 1 2 12 ( ) 2 , ( ) 2. ( ) 4 ( ) Find the natural response: Turn off the voltage source, and apply KCL, KVL t t n v dv i C d v dv R dt v v t Ae Bedt dt di s si L v dt 2 2 32 2 2 5 6 0 ( ) 5 6 04 0 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 27 Chapter 8: Second-order circuits V. General second order circuits Ex 8.7: Find the complete response v and i for t > 0. Imposing the initial condition gives: 1 2 V 0,5F C R 2 1 H L R 1 2Ω 4Ω i t = 0 The complete response is: t t n f v t v t v t A e B e 2 3( ) ( ) ( ) 4 . . A B A dv BA B dt 8 12 (0) 42 3 12 t t t t t tv dv i C e e e e e e A t R dt 2 3 2 3 2 3 2 2 6 2 12 6 2 6 4 , 0 t t v t e e V t 2 3( ) 4 12 4 , 0 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 7u(t)V R 2 0,5H L 1 R 1 0,2H L 2 28 Chapter 8: Second-order circuits V. General second order circuits Ex 8.8: Find v0(t) for t > 0 Applying KVL to the left loop at t = +0 1Ω 3Ω Obtain the initial and final values of 2 currents For t u t i i 1 2 0 : 7 ( ) 0 ( 0) 0 ( 0) L L L L di v V s dt L R i v v v V di t v dt L 1 1 1 1 1 1 0 1 2 2 2 ( 0) 14 / 7 ( 0) ( 0) ( 0) ( 0) 7 ( ) 0 L i i i i v v R i i 1 1 2 2 2 0 2 1 2 ( 0) ( 0) 0, ( 0) ( 0) 0 ( 0) ( 0) ( 0) ( 0) 0 - + V0 i1 i2 As t ∞: i i A R 1 2 1 7 ( ) ( ) 2,33 Applying KVL to 2 meshes to find natural responses: di R R i R i L d i di idt dt dt di R i i L s s dt 21 1 2 1 2 2 1 1 1 12 22 2 2 1 2 ( ) 0 13 30 0 ( ) 0 13 30 0 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 7u(t)V R 2 0,5H L 1 R 1 0,2H L 2 29 Chapter 8: Second-order circuits V. General second order circuits Ex 8.8: Find v0(t) for t > 0 1Ω 3Ω - + V0 i1 i2 Applying KVL to loop t t A B A i t e e A A B B 3 10 1 2,33 0 1,33 ( ) 2,33 1,33 3 10 14 1 t t n s s s i Ae Be s 12 3 10 1 2 3 13 30 0 10 t t f n i t i i Ae Be 3 10 1 1 1 ( ) 2,33 Imposing the initial condition gives: t t di di i i L i i L e e A dt dt 3 101 1 1 2 1 2 1 1 7 4 7 4 2,33 3,33 t tv t R i t i t e e A3 100 2 1 2( ) ( ) ( ) 2 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 10u(t) mV R 2R 1 4 3 7 C 1 C 2 30 Chapter 8: Second-order circuits V. General second order circuits Ex 8.9: Find v0(t) for t > 0 10kΩ - + V0 2 VO For the natural response, turning off the source: S v v dv v v At node C R dt R v v dv At node C R dt 1 2 1 0 2 1 2 1 0 0 1 2 1: 2 : Applying KCL: v v v S v v dv dv dv C C C R dt dt dt 2 1 0 1 2 0 0 2 2 1 1 dv v v R C dt 0 1 0 2 1 10kΩ 20μF 100μF - + V2 1 V1 S vd v dv v dt R C R C dt R R C C R R C C 2 0 0 0 2 1 2 2 2 1 2 1 2 1 2 1 2 1 1 S d v dv v v dt dt 2 0 0 02 2 5 5 s s s j2 1,2 2 5 0 1 2 tnv t e A t B t0 ( ) cos2 sin2 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 10u(t) mV R 2R 1 4 3 7 C 1 C 2 31 Chapter 8: Second-order circuits V. General second order circuits Ex 8.9: Find v0(t) for t > 0 10kΩ - + V0 2 VO S f v v v v v mV 0 1 0 0 ( ) ( ) ( ) 10 As t ∞: v v 0 2 ( 0) ( 0) 0 tn fv t v v e A t B t0 0 0( ) 10 cos2 sin2 10kΩ 20μF 100μF - + V2 1 V1 v v dv v v v v v dt R C 0 2 0 1 0 1 2 0 2 1 ( 0) ( 0) 0 ( 0) 0 ( 0) ( 0) ( 0) 0 The complete response is: Find initial conditions: v A A dv A B B dt 0 0 ( 0) 10 0 10 ( 0) 2 0 5 The complete response becomes: tv t e t t mV0( ) 10 10cos2 5sin2 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 32 Chapter 8: Second-order circuits VI. Applications Practical applications of RLC circuits are found in control and communications circuits, for examples: Ringing circuits Peaking circuits Resonant circuits Smoothing circuits Filters Automobile ignition Most of the circuits cannot be covered until we treat AC sources.
File đính kèm:
- fundamentals_of_electric_circuit_chapter_8_second_order_circ.pdf