Digital Signal Processing - Quantization process and noise shaping
1. Quantization process.
2. Over sampling and Noise Shaping.
3. Digital to Analog conversion DAC.
4. Analog to Digital Conversion ADC.
Tóm tắt nội dung Digital Signal Processing - Quantization process and noise shaping, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
DIGITAL SIGNAL PROCESSING Lectured by Assoc. Prof. Thuong Le-Tien Tel: 0903 787 989 Email: Thuongle@hcmut.edu.vn September 2011 1 Quantization process and noise shaping Quantization process and noise shaping 1. Quantization process. 2. Over sampling and Noise Shaping. 3. Digital to Analog conversion DAC. 4. Analog to Digital Conversion ADC. 2 1. Quantization Process Analog to digital converter - ADC. 3 Analog signal x(t) Sample & hole Sampler & quantizer x(nT) Sampled signal A/D converter Quantized signal x (nT)Q To DSP B bits/sample Quantized sample xQ(nT) represented by B bits take only one of 2B possible value. Quantization width or quantizer resolution Q 4 R is the full-scale range B R Q 2 B Q R 2 R is in the symmetrical range: Quantization error: e(nT) = xQ(nT) – x(nT) In general case: e = xQ – x where, xQ is the quantized value 5 22 Q e Q 2 )( 2 R nTx R Q Root Mean Square error: Quantization error e can be assumed as a random variable which is distributed uniformly over the range [-Q/2, Q/2] then having probability density: 6 Mean: 0 1 2/ 2/ Q Q ede Q e 12 1 2 2/ 2/ 22 Qdee Q e Q Q 12 2 Qeerms 7 2/ 2/ )(][ Q Q deeepeE SNR (Signal-to-noise ratio): 20log10(R/Q) = 20log10(2B) = 20Blog10(2) 1)( 2/ 2/ Q Q deep 2/ 2/ 22 )(][ Q Q deepeeE -Q/2 Q/20 p(e) e other Q e Q Qep ,0 22 , 1 )( Normalization 1/Q needed to guarantee The statistical expectation B Q R SNR 6log20 10 8)(2 ke Assumed e(n) is white noise then the autocorrelation function is the delta function 12 )( 2 22 QneEe The average power or variance of e(n) Example: in digital audio application, signal sampled at 44kHz and each sample quantized using a ADC having full scale of 10volts. Determine number of bits B if the rms quantization error must be kept below 50 microvolts. Then determine the actual rms error and bit rate Sol: Which is rounded to B=16 Then bit rate: The dynamic range of the quantizer is 6B = 96 dB 10 2. Oversampling and noise shaping Power spectrum of white quantization noise Power spectrum density of e(n) The noise power within at Nyquist sub-interval [fa, fb] with f = fb – fa : The noise power over the entire interval f = fs Noise shaping quantizers reshape the spectrum of the quantization noise into more convenient shape. This accomplished by filtering the white noise sequence e(n) by a noise shaping filter HNS(f). xQ(n) = x(n) + (n) 11 2 2 es s e f f 12 Over Sampling ratio Noise power within a given interval Power spectral density 2 2 2 )()()()( fH f fSfHfS NS s e eeNS b a b a f f NS s e f f dffH f dffS 2 2 )()( s s f f L ' Quantization noise powers 12 2 2 Q e To maintain the same quality required the power spectral density remain the same ' '22 s e s e ff 13 12 ' ' 2 2 Q e Lf f e s e se 22 2 ' ' ' BBB e eL 2)'(2 2 2 22 ' B = B-B’, or B = 0.5 log2 L 14 The total noise power in the Nyquist interval: 12 2 B2- 1 12 2 p p Lp 15 p s NS f f fH 2 2 ' 2 )( 2/'sff 12 2 2 12 2 2 2/ 2/ 12 2 2 2 2 2 1 12 ' '12 ' '12 ' ' 2 ' ' p p e p s s p e f f p s s p e p ss e e Lpf f p f f p df f f f s s 22 '/ ee = 2 - (B-B’) = 2 -2B 12 2 2 12 2 2 2/ 2/ 12 2 2 22 2 1 2 ' '12 ' '12 ' ' 2 ' ' p p e p s s p e f f p s s p e p ss e e Lpf f p f f p df f f f s s 12 2 2 12 2 2 2/ 2/ 12 2 2 2 2 2 1 12 ' '12 ' '12 ' ' 2 ' ' p p e p s s p e f f p s s p e p ss e e Lpf f p f f p df f f f s s 22 '/ ee 12 log5.0log)5.0( 2 22 p LpB p 16 Oversampling and noise shaping system 3. Digital to Analog Converter DAC B bit 0 and 1 at input, b = [b1, b2,, bB], (a) unipolar natural binary, (b) bipolar offset binary, (c) bipolar 2’s complement. 17 Unipolar natural binary xQ = R(b12- 1 + b22 -2 + + bB2 -B) xQ = R2 -B(b12 B-1 + b22 B-2 + + bB-12 1 + bB) Bipolar offset binary xQ = R(b12 -1 + b22 -2 + + bB2 -B – 0.5) Two’s complement xQ = R(b12 -1 + b22 -2 + + bB2 -B – 0.5) 18 19 Converter code for B=4bits, R=10volts 20 4. Analog to Digital Converter (ADC) Example: A sampled sinusoid x(n)=Acos(2pfn), A=3volts And f=0.04 cycles/sample. The sinusoid is evaluated at the ten Sampling times n=0,1,29 and x(n) is quantized using a 4-bit ADC with R=10volts. The following table shows the sampled and quantized values and its codes 22 5. Analog and Digital Dither Dither is a low-level white noise signal added to the input before quantization for eliminating granulation or quantization distortion and making the total quantization error behave like white noise Analog dither 23 Digital dither can be added to a digital prior to a requantization operation that reduces the number of bits representing the signal. Nonsubtractive dither process and quantization (Analog and digital dithers) v(n) is dither noise 24 y(n) = x(n) + v(n) Quantization error: e(n) = yQ(n) – y(n) Total error resulting from dithering and quantization: (n) = yQ(n) – x(n) (n) = (y(n) + e(n)) – x(n) = x(n) + v(n) + e(n) – x(n) or (n) = yQ(n) – x(n) = e(n) + v(n) Total error noise power 22222 12 1 vve Q The two common Rectangular and triangular dither probability densities 25 10log2 = 3 dB 10log3 = 4.8 dB 10log4 = 6 dB Total error variance (the noise penalty in using dither) Subtractive dither Total error (n) = yout(n) – x(n) = (yQ(n) – v(n)) – x(n) = yQ(n) – (x(n) + v(n)) (n) = yQ(n) – y(n) = e(n) 26 0 20 40 60 80 100 120 -1,5 -1,0 -0.5 0 0.5 1,0 1,5 0 0,1 0,2 0,3 0,4 0,5 60 120 180 240 Undilhered Quantization Undilhered Spectrum M a g n it u d e (U n it s o f Q ) Quantized Original Dithered Quantization Dithered Spectrum -1,5 -1,0 -0.5 0 0.5 1,0 1,5 (U n its o f Q ) 60 120 180 240 M a g n it u d e 0 20 40 60 80 100 120 0 0,1 0,2 0,3 0,4 Quantized Dithered original 0,5
File đính kèm:
- digital_signal_processing_quantization_process_and_noise_sha.pdf