Digital Signal Processing - Degital Filter Realizations

• b multiplier terms are feeding forward and x

dependent. (non-recursive terms)

• a multiplier terms are feeding back and y

dependent (recursive terms)

pdf16 trang | Chuyên mục: Kỹ Thuật Số | Chia sẻ: tuando | Lượt xem: 488 | Lượt tải: 0download
Tóm tắt nội dung Digital Signal Processing - Degital Filter Realizations, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
12/15/2011 1
DIGITAL SIGNAL PROCESSING
DIGITAL FILTER 
REALIZATIONS
Lectured by: Assoc. Prof. Dr. Thuong Le-Tien
National Distinguished Lecturer
September, 2011
1
Digital filter realizations
2
2
1
10
2
2
1
10
)(
)(
)(





zazaa
zbzbb
zD
zN
zH
221102211   nnnnùnn xbxbxbyayay
 1. Direct form realization
• b multiplier terms are feeding forward and x 
dependent. (non-recursive terms)
• a multiplier terms are feeding back and y 
dependent (recursive terms)
12/15/2011 2
M
M
L
L
zazazaa
zbzbzbb
zD
zN
zH







2
2
1
10
2
2
1
10
)(
)(
)(
Second order IIR digital filter
** General case of a IIR digital filter
12/15/2011 3
z
-1
z
-1
x(n)
v (n)0
v (n)1
v (n)2
b2
b1
b0
w (n)0
w (n)1
w (n)2
y(n)
z
-1
z
-1
-a1
-a2
LnLnnnMnMnnn xbxbxbxbyayayay    221102211
12/15/2011 4
z
-1
z
-1
x(n)
v0
v1
v2
b2
b1
b0
w0
w1
w2
y(n)
z
-1
z
-1
-a1
-a2
z
-1
vL
z
-1
wM
-aMbL
421
31
5.03.02.01
432
)(





zzz
zz
zH
31421 432503020   nnnnnnn xxxyyyy ...
Example:
12/15/2011 5
z
-1
z
-1
x(n)
v0
v1
v2
-3
2
w0
w1
w2
y(n)
z
-1
z
-1
-0,2
0,3
z
-1
w4
-0,5
z
-1
v3
4
w3
)()( 221122110   nnnnnn yayaxbxbxby
)z(N
)z(D
)z(H
1

2. Canonical or Direct form 2 of IIR digital filters
12/15/2011 6
z
-1
z
-1
N(z) 1/D(z)
z
-1
z
-1
x(n) y(n)
v (n)0
v (n)1
v (n)2
b2
b1
b0 w (n)0
w (n)1
w (n)2
-a1
-a2
* Interchanging N(z) and 1/D(z)
12/15/2011 7
z
-1
z
-1
N(z)1/D(z)
z
-1
z
-1
x(n) y(n)
b2
b1
b0w (n)0
w (n)1
w (n)2
-a1
-a2
w(n)
w (n)0
w (n)1
w (n)2
w(n)
•Merging blocks to build the 
canonical form of the second order
section (SOS) digital filter
12/15/2011 8
z
-1
x(n) y(n)
w (n)o
w (n)1 b1
bo
-a1
-a2
w(n) = w (n)o
z
-1
w (n)2 b2
* M order IIR filter realization
12/15/2011 9
z
-1
x(n) y(n)
wo
w1 b1
bo
-a1
-a2
w(n)
z
-1
w2 b2
z
-1
-aM
wM bM
3. Cascade
The cascade realization form of a general 
transfer function assumes that the transfer 
function is the product of such second 
order sections 
 









1
0
1
0 21
210
21
21
1
)()(
K
i
K
i ii
iii
i
zaza
zbzbb
zHzH
12/15/2011 10
12/15/2011 11
z
-1
z
-1
z
-1
z
-1
z
-1
z
-1
z
-1
z
-1
x = x0
x(n)
w (n)0
w00
w01
w02
-a01
-a02
b00
b01
b02
x = y1 0 w (n)1
b10
b11
b12
-a11
-a12
w10
w11
w12
w (n)2
w20
w21
w22
-a21
-a22
b20
b21
b22
x = y3 2 w (n)3
w30
w31
w32
-a31
-a32
b30
b31
b32
y = y3
y(n)
x = y2 1
H (z)0 H (z)1
H (z)2 H (z)3
42
42
1021
21
21
21
25.084.01
449
)()(
5.04.01
243
5.04.01
243
)(


























zz
zz
zHzH
zz
zz
zz
zz
zH
Example
12/15/2011 12
z
-1
x(n) y(n)
w (n)0
w2
9
-0,84
w(n) 
z
-1
w4
z
-1
z
-1
-0,25
w3
4
-4
The roots of Numerator: z = 0.9, z = -0.5 ± 0.7j, 
z = 0.8 ± 0.4j
The roots of Denominator: p = -0.8, p = - 0.7 ± 0.4j
321
54321
52.077.12.21
5328.09376.033.048.05.11
)(





zzz
zzzzz
zH
    
    2111
2111
1
806114050140801
74017050170501
901






z.z.z)j..(z)j..(
z.zz)j..(z)j..(
)z.(
    2111
1
6504114070140701
801




z.z.z)j..(z)j..(
)z.(
Example:
 21
21
21
1
1
80611
650411
7401
801
901 









 z.z..
z.z.
z.z
.
z.
z.
)z(H
12/15/2011 13
88
1
( )
1 0.0625
z
H z
z





 )k(jjkjj eeeezz 12288 101  
710812 ,,,k,ez /)k(jk 
 
       43526170 z,z,z,z,z,z,z,z
Example:
Complex conjugate pairs
  
  
  
   21211413
21211
5
1
2
21211
6
1
1
21211
7
1
0
847811
8
7
2111
765401
8
5
2111
765401
8
3
2111
847811
8
2111
































zz.zzcoszzzz
zz.zzcoszzzz
zz.zzcoszzzz
zz.zzcoszzzz




12/15/2011 14
       43526170 p,p,p,p,p,p,p,p
     
  
  
   21211413
2211
5
1
2
21211
6
1
1
2111
7
1
0
50150
8
6
2111
50150
8
4
2111
50150
8
2
2111
50150150111


























z.zz.zcoszpzp
z.z.zcoszpzp
z.zz.zcoszpzp
z.z.z.zpzp



.
z.z
zz.
.
z.
zz.
.
.
z.z
zz.
.
z.
zz.
)z(H









































21
21
2
21
21
21
2
21
501
847811
501
765401
501
765401
501
847811
 )12(4288 )5.0(0625.00625.000625.01   kjjk eezz
71050 82 ,,,k,e.p /jkk 

12/15/2011 15
12/15/2011 16
z3
z2 z1
z0
z4
z5 z6
z7
p5 p7
p6
p0p4
p3 p1
p2
= poles
= zeros
Unit circle
/8
Magnitude response
Pole frequencie s = (2k) /8
zero 

frequencie s = (2k+1) /8
3
2
1
0
0 1 2 3 4 5 6 7 8
  in units of /8
|H
(
)|

z
-8
x y
w0
0,0625
w8

File đính kèm:

  • pdfdigital_signal_processing_degital_filter_realizations.pdf