Bài giảng Vật lý đại cương 1 - Chương 5: Trường tĩnh điện - Nguyễn Xuân Thấu
I. TƯƠNG TÁC ĐIỆN – ĐỊNH LUẬT COULOMB
1. Sự nhiễm điện và một số khái niệm.
- Cách làm nhiễm điện cho vật: có 3 cách cọ xát , tiếp xúc và
hưởng ứng.
- Có hai loại điện tích: dương (+) và âm (-). Các điện tích cùng dấu thì
đẩy nhau, trái dấu thì hút nhau.
- Điện tích có giá trị nhỏ nhất gọi là điện tích nguyên tố:
e 1,6.10 C 19 m 9,1.10 kg e 31
- Điện tích của một vật nhiễm điện luôn bằng bội số nguyên lần của điện
tích nguyên tố: Q = ne
• Giá trị tuyệt đối của điện tích được gọi là điện lượng.
• Điện tích của một chất điểm gọi là điện tích điểm.
3 2rl 2kql 2kp E kq r r r 26 II. ĐIỆN TRƯỜNG 4. Đường sức của điện trường Đường sức của điện trường là đường mà tiếp tuyến với nó tại mỗi điểm trùng với phương của vectơ cường độ điện trường tại điểm đó, chiều của đường sức là chiều của vectơ cường độ điện trường. Tính chất: Qua bất kì 1 điểm nào trong điện trường cũng vẽ được 1 đường sức. Các đường sức không cắt nhau. Quy ước: Số đường sức xuyên qua một đơn vị diện tích đặt vuông góc với phương của đường sức bằng độ lớn của vectơ cường độ điện trường tại đó. 27 II. ĐIỆN TRƯỜNG 5. Điện phổ Tập hợp các đường sức điện trường gọi là điện phổ (phổ của điện trường). Điện phổ cho biết phân bố điện trường một cách trực quan Điện trường đều có các đường sức song song cách đều nhau. Đường sức của điện trường tĩnh thì không khép kín 28 III. ĐỊNH LÍ OSTROGRADSKY – GAUSS (O – G) 1. Véc-tơ cảm ứng điện Vectơ cảm ứng điện trong môi trường đồng nhất, đẳng hướng: Vectơ cảm ứng điện do một điện tích điểm gây ra: 3 Q D . r 4 r 0D E Vectơ cảm ứng điện không phụ thuộc tính chất của môi trường. Đơn vị đo: C/m2 0EE 29 III. ĐỊNH LÍ OSTROGRADSKY – GAUSS (O – G) 2. Thông lượng cảm ứng điện (điện thông): Thông lượng cảm ứng điện gửi qua yếu tố diện tích dS: E D d d D.dS.cos D.n .dS D.d S Thông lượng cảm ứng điện gửi qua mặt (S): D D (S) d Qui ước chọn pháp vectơ đơn vị: Mặt kín: chọn hướng ra ngoài; mặt hở: chọn tùy ý. Ý nghĩa của điện thông: là đại lượng vô hướng có thể âm, dương, hoặc = 0. Giá trị tuyệt đối của điện thông cho biết số đường sức gửi qua mặt (S). 30 III. ĐỊNH LÍ OSTROGRADSKY – GAUSS (O – G) 3. Nội dung định lý O – G: trong(S) 0 (S) q E d S 0 div E Dạng vi phân: div D Dạng tích phân: trong(S) (S) Dd S q 31 III. ĐỊNH LÍ OSTROGRADSKY – GAUSS (O – G) 4. Ứng dụng định lí O – G: B1: Chọn mặt kín (S) – gọi là mặt Gauss, sao cho việc tính tích phân được đơn giản nhất. B2: Tính thông lượng điện cảm gởi qua (S). B3: Tính tổng điện tích chứa trong (S). B4: Thay vào biểu thức của định lí O – G, suy ra đại lượng cần tìm. 32 III. ĐỊNH LÍ OSTROGRADSKY – GAUSS (O – G) 4. Ứng dụng định lí O – G: Ví dụ 1: Xác định cường độ điện trường tại điểm bên trong và bên ngoài khối cầu bán kính R, tích điện đều với mật độ điện khối . Cho biết hệ số điện môi ở trong và ngoài khối cầu đều bằng . O R 33 III. ĐỊNH LÍ OSTROGRADSKY – GAUSS (O – G) 4. Ứng dụng định lí O – G: O M n dS (S) E r Điện thông gửi qua mặt gauss (S): 2 D G (S) (S) DdS DdS DS D.4 r Tổng điện tích trong (S): 3 trong(S) 4 Q q .V R 3 Theo đ lí O - G: D Q Vậy cảm ứng điện bên ngoài khối cầu là: n 2 2 2 0 0 Q D Q kQ D D E 4 r 4 r r 34 E n r (S) dS M Điện thông gửi qua mặt (S): 2 D G (S) (S) DdS DdS DS D.4 r III. ĐỊNH LÍ OSTROGRADSKY – GAUSS (O – G) 4. Ứng dụng định lí O – G: Tổng điện tích chứa trong (S): 3 trong(S) (S) 4 Q q .V r 3 Theo đ lí O - G: D Q t t 0 r r D ;E 3 3 Vậy cảm ứng điện bên trong khối cầu là: 35 III. ĐỊNH LÍ OSTROGRADSKY – GAUSS (O – G) 4. Ứng dụng định lí O – G: n 2 kQ r E . r r t o r E 3 Bên trong khối cầu tích điện đều: Bên ngoài khối cầu hoặc vỏ cầu tích điện đều: cường độ điện trường giống như một điện tích điểm đặt tại tâm gây ra. Bên trong vỏ cầu tích điện đều: cường độ điện trường bằng không. 36 III. ĐỊNH LÍ OSTROGRADSKY – GAUSS (O – G) 4. Ứng dụng định lí O – G: Ví dụ 2: Xác định cường độ điện trường do mặt phẳng rộng vô hạn, tích điện đều với mật độ điện mặt gây ra tại điểm cách mặt phẳng () một khoảng h. Cho biết hệ số điện môi là . + M h 37 III. ĐỊNH LÍ OSTROGRADSKY – GAUSS (O – G) 4. Ứng dụng định lí O – G: D Q S E n day day 2 DdS 2DS D (S) xq 2day Dd S Dd S Dd S trong(S) day Q q S 0 D ;E 2 2 Điện thông gửi qua mặt (S): Tổng điện tích chứa trong (S): Theo đ lí O - G: Vậy cường độ điện trường do mặt phẳng gây ra là: Điện trường đều E n n 38 Ví dụ 3: Một dây dẫn thẳng, dài vô hạn, tích điện đều với mật độ điện dài . Xác định cường độ điện trường tại điểm M cách dây dẫn môt đoạn r. III. ĐỊNH LÍ OSTROGRADSKY – GAUSS (O – G) 4. Ứng dụng định lí O – G: M E D (S) xq 2day xq Dd S Dd S Dd S DdS D.2 rh h trong(S) Q q .h D 0 .h Q D E 2 rh 2 r 2 r 0 2k E .n .n 2 r r 39 IV. CÔNG CỦA LỰC ĐIỆN TRƯỜNG ĐIỆN THẾ - HIỆU ĐIỆN THẾ 1. Công của lực điện trường: Điện tích q di chuyển trong điện trường của điện tích Q (N) (N) (N) 2 3 (M) (M) (M) Qq r r d r A F d r k d r kQq r r r MN M N kQ kQ A q r r 2 Q r F qE qk . r r 40 Trong trường hợp tổng quát, người ta chứng minh được: Công của lực điện trường không phụ thuộc vào hình dạng đường đi, chỉ phụ thuộc vào vị trí đầu và cuối. Lực điện trường là LỰC THẾ. Đối với các trường lực thế, người ta xây dựng các hàm vô hướng phụ thuộc vị trí của các điểm trong trường lực thế, gọi là hàm thế. Hàm thế của điện trường gọi là điện thế V(x,y,z). IV. CÔNG CỦA LỰC ĐIỆN TRƯỜNG ĐIỆN THẾ - HIỆU ĐIỆN THẾ 1. Công của lực điện trường: 41 IV. CÔNG CỦA LỰC ĐIỆN TRƯỜNG ĐIỆN THẾ - HIỆU ĐIỆN THẾ 2. Điện thế - hiệu điện thế a. Khái niệm: Điện thế là một hàm vô hướng V(x,y,z), sao cho: MN MN NM U q A VV b. Nhận xét: Điện thế không xác định đơn giá mà sai khác nhau một hằng số cộng, tùy thuộc vào việc chọn gốc điện thế. Lí thuyết: chọn gốc điện thế ở vô cùng; Thực hành: chọn gốc điện thế ở đất, vỏ máy. 42 IV. CÔNG CỦA LỰC ĐIỆN TRƯỜNG ĐIỆN THẾ - HIỆU ĐIỆN THẾ 2. Điện thế - hiệu điện thế Q V k C r - Điện thế gây bởi 1 điện tích điểm: i M i iM Q V V k C r M dq V dV k C r vËt vËt mang mang ®iÖn ®iÖn Chú ý: Nếu chọn gốc điện thế ở vô cùng thì C = 0 c. Điện thế do các hệ điện tích gây ra: - Điện thế gây bởi hệ điện tích điểm: - Điện thế gây bởi vật tích điện: 43 IV. CÔNG CỦA LỰC ĐIỆN TRƯỜNG ĐIỆN THẾ - HIỆU ĐIỆN THẾ 3. Thế năng của điện tích trong điện trường: tM tN MN MN M NW W A qU q(V V ) Ta có: tM MW qV Vậy thế năng của điện tích q trong điện trường là: 44 Ví dụ 1: Cho q1 = 5.10 – 8 C; q2 = - 8.10 – 8 C, đặt tại A, B trong không khí. Tính điện thế tại M cách A, B lần lượt là 10 cm, 20cm. Chọn gốc điện thế ở vô cùng. IV. CÔNG CỦA LỰC ĐIỆN TRƯỜNG ĐIỆN THẾ - HIỆU ĐIỆN THẾ 3. Thế năng của điện tích trong điện trường: A B M + - q2 q1 1 2 1 2 1 2 1 2 kq kq q q V k ( ) r r r r 8 8 9 5.10 8.10V 9.10 ( ) 900V 0,1 0, 2 45 IV. CÔNG CỦA LỰC ĐIỆN TRƯỜNG ĐIỆN THẾ - HIỆU ĐIỆN THẾ 3. Thế năng của điện tích trong điện trường: Ví dụ 2: Vòng dây tròn, bán kính a, tích điện đều với điện tích tổng cộng Q. Tính điện thế tại tâm O của vòng dây và tại điểm M trên trục vòng dây, cách O một đoạn x. Suy ra hiệu điện thế UOM. Áp dụng: a = 5cm; x = 12cm; Q = -2,6.10– 9 C. Xét 2 trường hợp: a) Gốc điện thế ở vô cùng; b) Gốc điện thế tại O. 46 IV. CÔNG CỦA LỰC ĐIỆN TRƯỜNG ĐIỆN THẾ - HIỆU ĐIỆN THẾ 3. Thế năng của điện tích trong điện trường: M v/d v/d v/d k.dq k V dV dq r r M 2 2 kQ V a x 9 9 2 2 9.10 .( 2,6.10 ) 0,05 0,12 - 180V O kQ V a 9 99.10 .( 2,6.10 ) 0,05 - 468V OM O M U V V = - 288V a) Gốc điện thế ở vô cùng: 47 IV. CÔNG CỦA LỰC ĐIỆN TRƯỜNG ĐIỆN THẾ - HIỆU ĐIỆN THẾ 3. Thế năng của điện tích trong điện trường: b) Gốc điện thế ở O O kQ V C 468 C 0 a C 468 M 2 2 kQ V C 180 C 288V a x OM O M U V V 288V r M a O d x 48 IV. CÔNG CỦA LỰC ĐIỆN TRƯỜNG ĐIỆN THẾ - HIỆU ĐIỆN THẾ 4. Mặt đẳng thế a. Khái niệm: Tập hợp các điểm trong điện trường có cùng một giá trị điện thế, tạo nên mặt đẳng thế. b. Tính chất: c. Qui ước vẽ: Độ chênh lệch V giữa hai mặt đẳng thế liên tiếp là không đổi. Suy ra: điện trường mạnh thì các mặt đẳng thế dày, điện trường yếu thì các mặt đẳng thế thưa; điện trường đều thì các mặt đẳng thế là các mặt phẳng song song và cách đều nhau. - Các mặt đẳng thế không cắt nhau - Khi điện tích q di chuyển trên mặt đẳng thế thì công của lực điện trường bằng không. - Đường sức điện trường (do đó, vectơ cường độ điện trường) luôn vuông góc với mặt đẳng thế. 49 IV. CÔNG CỦA LỰC ĐIỆN TRƯỜNG ĐIỆN THẾ - HIỆU ĐIỆN THẾ 5. Liên hệ giữa cường độ điện trường và điện thế Xét điện tích q di chuyển trong điện trường từ nơi có điện thế cao đến nơi có điện thế thấp. Công của lực điện trường trên đoạn đường vi phân là: dA Fd l q E d l dl 1 2 dA q(V V ) qdV Mặt khác: dV Ed l Ed s E.dn 0 dV V V V E .n grad V ( , , ) dn x y z ds 50 IV. CÔNG CỦA LỰC ĐIỆN TRƯỜNG ĐIỆN THẾ - HIỆU ĐIỆN THẾ 5. Liên hệ giữa cường độ điện trường và điện thế MN MN MN U q A dE 0dE )C( Lưu số của vectơ cường độ điện trường giữa hai điểm M, N bằng hiệu điện thế giữa hai điểm đó. Lưu số của vectơ cường độ điện trường dọc theo một đường cong kín bất kì thì bằng không. Vectơ cường độ điện trường hướng theo chiều giảm thế. Độ lớn của vectơ cường độ điện trường tại mỗi điểm bằng độ giảm điện thế trên một đơn vị chiều dài dọc theo đường sức đi qua điểm đó. Lân cận một điểm trong điện trường, điện thế biến thiên nhanh nhất theo phương đường sức đi qua điểm đó. E.d dV dV ds dn 51 + Phần bài tập: Các bài tập tối thiểu yêu cầu sinh viên ôn tập (Sách BTVLĐC tập 2): 1.1, 1.2, 1.3, 1.6, 1.7, 1.9, 1.10, 1.11, 1.13, 1.20, 1.23, 1.24, 1.25, 1.32, 1.33, 1.34, 1.37 52 HẾT
File đính kèm:
- bai_giang_vat_ly_dai_cuong_1_chuong_5_truong_tinh_dien_nguye.pdf