Bài giảng Lý thuyết xác suất và thống kê toán - Chương 5: Các định lý giới hạn

Tập trung Định lý giới hạn trung tâm

▪ Bất đẳng thức Trebusep (Chebyshev)

▪ Định lý Trebusep

▪ Định lý Bernoulli

▪ Định lý giới hạn trung tâm

pdf41 trang | Chuyên mục: Xác Suất Thống Kê | Chia sẻ: yen2110 | Lượt xem: 308 | Lượt tải: 0download
Tóm tắt nội dung Bài giảng Lý thuyết xác suất và thống kê toán - Chương 5: Các định lý giới hạn, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
ân thành k nhóm: 
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 144

 
1
1 n
i
i
x x
n

 
i
k
i ix xn
n 1
1
Chương 6. Cơ sở lý thuyết mẫu 6.4. Thống kê
Trung vị - Mốt mẫu cụ thể
▪ Trung vị (median) me là giá trị chia mẫu làm hai
phần có số phần tử bằng nhau:
• Sắp xếp các phần tử mẫu theo giá trị tăng dần
• Nếu n lẻ thì me là giá trị phần tử chính giữa, nếu n
chẵn thì me là trung bình cộng cặp giữa
▪ Mốt (mode) m0 là giá trị có tần số xảy ra nhiều nhất. 
Một mẫu có thể có 1 mốt, nhiều mốt, hoặc không có
mốt.
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 145
Ví dụ 6.1
▪ Cho hai mẫu là thu nhập (triệu đồng) của các hộ gia
đình từ hai khu vực A và B. Tìm trung bình, trung vị, 
mốt của hai mẫu
▪ (A) 7, 6, 9, 10, 15, 12, 8, 9, 8
▪ (A) 7, 4, 5, 6, 4, 4, 5, 7, 8, 60
▪ Có nhận xét gì về việc so sánh thu nhập qua Trung
bình và qua Trung vị?
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 146
Chương 6. Cơ sở lý thuyết mẫu 6.4. Thống kê
Độ lệch bình phương trung bình (MS)
▪ Tổng bình phương sai lệch (sum of squares)
▪ Độ lệch bình phương trung bình (mean of squares)
▪ Khi đó: 
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 147
( )

 
2
1
n
i
i
SS X X
( )

  
2
1
1 n
i
i
SS
MS X X
n n
( ) σ

 2
1n
E MS
n
Chương 6. Cơ sở lý thuyết mẫu 6.4. Thống kê
Phương sai mẫu – Độ lệch chuẩn mẫu
▪ Phương sai mẫu (sample variance) S2
▪ Hay: 
▪ Suy ra: E(S2) = 2
▪ Độ lệch chuẩn mẫu: 𝑺 = 𝑺𝟐
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 148
( )

  
 

2 2
1
1
1 1
n
i
i
SS
S X X
n n


2
1
n
S MS
n
Chương 6. Cơ sở lý thuyết mẫu 6.4. Thống kê
Phương sai mẫu – độ lệch chuẩn mẫu
▪ Với mẫu cụ thể: Phương sai s2
▪ Hoặc: 
với: 
▪ Độ lệch chuẩn mẫu cụ thể: : 𝒔 = 𝒔𝟐
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 149
( )

 


n
i
i
s x x
n
2 2
1
1
1
 ( )  
 
2 2 2
1 1
n n
s ms x x
n n

 
2 2
1
1 n
i
i
x x
n
Chương 6. Cơ sở lý thuyết mẫu 6.4. Thống kê
Phương sai mẫu – độ lệch chuẩn mẫu
▪ Nếu mẫu phân thành k nhóm với tần số tương ứng
trong mỗi nhóm là ni :
▪ Hoặc: 
Với
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 150
( )

 

 i
i
s x x
n
2 2
1
1
1
k
in
 ( ) 

n
s x x
n
2 2 2
1
Chương 6. Cơ sở lý thuyết mẫu 6.4. Thống kê

  i
i
x x
n
2 2
1
1 k
in
Hệ số biến thiên
▪ Hệ số biến thiên (coefficient of variation) của mẫu:
▪ Hệ số biến thiên có thể dùng để so sánh giữa tất cả
các mẫu. 
▪ Ví dụ 6.1 (tiếp): Tính phương sai, độ lệch chuẩn, hệ
số biến thiên với hai mẫu trong ví dụ 6.1 trên
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 151
%
| |
 
s
CV
x
100
Chương 6. Cơ sở lý thuyết mẫu 6.4. Thống kê
Phương sai S*2
▪ Trường hợp đặc biệt: Biết trung bình tổng thể m
▪ Có thể tính phương sai S*2
▪ Khi đó E(S*2) = σ2
▪ Với mẫu cụ thể
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 152
* ( )

 
2 2
1
1 n
i
i
S X m
n
* ( ) ( )2 2 2
1 1
1 1
 
    
n
i ii
i
k
i
s x m x m
n
n
n
Chương 6. Cơ sở lý thuyết mẫu 6.4. Thống kê
Tần suất mẫu
▪ Trong mẫu kích thước n có XA phần tử có dấu hiệu
(biến cố) A
▪ Tần suất mẫu:
▪ Nếu P(A) = p thì: 
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 153
 A
X
f
n
( )
( )
( )
( )
σ




f
E f p
p p
V f
n
p p
n
1
1
Chương 6. Cơ sở lý thuyết mẫu 6.4. Thống kê
Ví dụ 6.2
▪ Cho kết quả cân thử một số sản phẩm như sau:
▪ (a) Kích thước mẫu bằng bao nhiêu?
▪ (b) Tính các thống kê: trung bình, phương sai, độ
lệch chuẩn, hệ số biến thiên của mẫu
▪ (c) Tỷ lệ sản phẩm nặng hơn 26g là bao nhiêu?
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 154
Khối lượng (g) 20-22 22-24 24-26 26-28 28-30
Số sản phẩm 2 5 8 7 3
Chương 6. Cơ sở lý thuyết mẫu 6.4. Thống kê
Một số thống kê khác
▪ Bốn Tứ phân vị (Quartile): Q1, Q2, Q3 chia mẫu
thành 4 phần với số lượng phần tử bằng nhau.
• Tứ phân vị thứ hai chính là trung vị
• Khoảng tứ phân vị: IQR = Q3 – Q1 cũng dùng để
đánh giá độ phân tán của mẫu
▪ Hệ số bất đối xứng (Skewness): a3 hay Sk
• a3=0: đối xứng; a3 > 0: lệch phải, a3 < 0: lệch trái
▪ Hệ số nhọn (Kurtosis) a4 ; khi mẫu gần phân phối
chuẩn thì a4  3
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 155
Chương 6. Cơ sở lý thuyết mẫu 6.4. Thống kê
6.5. MẪU NGẪU NHIÊN HAI CHIỀU
▪ Xét hai dấu hiệu (X, Y) cùng lúc, mẫu ngẫu nhiên hai
chiều kích thước n: W = {(X1, Y1), (X2, Y2),, (Xn, Yn)}
▪ Mẫu cụ thể: w = {(x1, y1), (x2, y2),, (xn, yn)}
▪ Trong các phần mềm quản lý dữ liệu:
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 156
Quan sát (i) X Y
1 x1 y1
2 x2 y2
n xn yn
Chương 6. Cơ sở lý thuyết mẫu 6.5. 
Thống kê của mẫu hai chiều
▪ Trung bình mẫu thành phần: ത𝑋, ത𝑌
▪ Phương sai mẫu thành phần: 𝑆𝑋
2, 𝑆𝑌
2
▪ Hiệp phương sai mẫu:
▪ Hệ số tương quan mẫu: 
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 157
 cov( , ) ( )( )

  


n
i i
i
X Y X X Y Y
n 1
1
1
cov( , )
( , ) 
X Y
X Y
r X Y
S S
Chương 6. Cơ sở lý thuyết mẫu 6.5. Mẫu ngẫu nhiên hai chiều
6.6. QUY LUẬT PHÂN PHỐI XÁC SUẤT
▪ Sử dụng thống kê trong mẫu để phản ánh về tham
số trong tổng thể.
▪ Cần có quy luật thể hiện mối liên hệ giữa các đại
lượng này.
▪ Quy luật liên hệ này phụ thuộc vào quy luật phân
phối xác suất của chính biến ngẫu nhiên X
▪ Dấu hiệu định lượng: thường dùng biến phân phối
Chuẩn N(, σ2)
▪ Dấu hiệu định tính: dùng biến Không một A(p)
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 158
Chương 6. Cơ sở lý thuyết mẫu 6.6. 
Biến ngẫu nhiên X phân phối chuẩn
▪ X ~ N(, σ2)
▪ Khi đó
▪ Suy ra:
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 159
 ~ , ; σμ σ μ μ σ 
2
2 2
X X X XX N n
( )
~ ( , )
μ
σ

 0 1
X n
U N
( )
~ ( )χ χ
σ

 
2
2 2
2
1
1
n S
n
( )
~ ( )
μ
 1
X n
T T n
S
Chương 6. Cơ sở lý thuyết mẫu 6.6. Quy luật phân phối xác suất
Hai biến ngẫu nhiên phân phối chuẩn
▪ X1 ~ N(1, σ1
2) ; X2 ~ N(2, σ2
2)
▪ Mẫu n1, n2 > 30
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 160
( ) ( )
~ ( , )
( / ) ( / )
μ μ
σ σ
  


1 2 1 2
2 2
1 1 2 2
0 1
X X
U N
n n
( ) ( )
( , )
( / ) ( / )
μ μ  
 

1 2 1 2
2 2
1 1 2 2
0 1
X X
T N
S n S n
~ ( , )  
2
1
1 22
2
1 1
S
F F n n
S
Chương 6. Cơ sở lý thuyết mẫu 6.6. Quy luật phân phối xác suất
Biến ngẫu nhiên phân phối A(p)
▪ X ~ A(p), mẫu kích thước n  100, tần suất f
▪ X1 ~ A(p1), mẫu kích thước n1  100, tần suất f1
▪ X2 ~ A(p2), mẫu kích thước n2  100, tần suất f2
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 161
( )
~ ( , )
( )



0 1
1
f p n
U N
p p
( ) ( )
~ ( , )
( ) ( )
  

 

f f p p
U N
p p p p
n n
1 2 1 2
1 1 2 2
1 2
0 1
1 1
Chương 6. Cơ sở lý thuyết mẫu 6.6. Quy luật phân phối xác suất
6.7. SUY DIỄN VỀ MẪU
▪ Khi biết các tham số và quy luật phân phối xác suất
của tổng thể, với mức xác suất (1 − 𝛼) cho trước, 
suy đoán về một số thống kê của mẫu ngẫu nhiên.
▪ Suy diễn về trung bình mẫu ത𝑋 rút ra từ tổng thể
phân phối chuẩn đã biết  và σ2
▪ Suy diễn về phương sai mẫu S2 rút ra từ tổng thể
phân phối chuẩn đã biết  và σ2
▪ Suy diễn về tần suất mẫu f rút ra từ tổng thể phân
phối Không-một đã biết p
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 162
Chương 6. Cơ sở lý thuyết mẫu 6.7. 
TÓM TẮT CHƯƠNG 6
▪ Tổng thể và mẫu
▪ Tham số tổng thể: trung bình, phương sai, tần suất
▪ Mẫu ngẫu nhiên và mẫu cụ thể (quan sát)
▪ Thống kê cơ bản: trung bình, phương sai, tần suất
▪ Thống kê khác: trung vị, mốt, độ lệch chuẩn, hệ số
nhọn, hệ số bất đối xứng
▪ Quy luật phân phối xác suất thể mối liên hệ giữa
tham số và thống kê: T, N(0,1), 2, F
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 163
Chương 6. Cơ sở lý thuyết mẫu
Tóm tắt chương
Đại lượng
Tổng
thể
Mẫu ngẫu
nhiên
Mẫu cụ
thể
Quy luật
liên hệ
Trung bình  ത𝑋 ҧ𝑥
N(0,1)
T(n – 1)
Phương sai
Độ lệch chuẩn
σ2
σ
S2
S
s2
s
2(n – 1)
Tần số
Tần suất
MA
p
XA
f
xA
f
N(0,1)
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 164
Chương 6. Cơ sở lý thuyết mẫu
Bài tập cơ bản trong Giáo trình
▪ Trang 304: 6.1
▪ Trang 343: 6.12, 6.13, 6.14, 6.15, 6.20, 6.25
▪ Trang 371: 6.31, 6.34, 6.40
▪ Trang 382: 6.43, 6.47, 6.54, 6.57
▪ Trang 384: 6.59, 6.64, 6.66
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 165
Chương 6. Cơ sở lý thuyết mẫu
Sử dụng Microsoft Excel
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 166
Thống kê Hàm
Trung bình = AVERAGE(số liệu)
Phương sai = VAR(số liệu)
Độ lệch chuẩn = STDEV(số liệu)
Tứ phân vị thứ j = QUARTILE(số liệu, j)
Hiệp phương sai = COVAR(số liệu 1, số liệu 2)
Hệ số tương quan = CORREL(số liệu 1, số liệu 2)
Hệ số bất đối xứng = SKEW(số liệu)
Hệ số nhọn = KURT(số liệu)
Chương 6. Cơ sở lý thuyết mẫu
Sử dụng Microsoft Excel
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 167
Mean 25.32 Skewness -0.15631
Standard Error 0.457238 Range 8
Median 25 Minimum 21
Mode 25 Maximum 29
Standard Deviation 2.28619 Sum 633
Sample Variance 5.226667 Count 25
Kurtosis -0.57901 Conf. Level (95.0%) 0.943693
▪ Data > Data Analysis > Descriptive Statistics
Chương 6. Cơ sở lý thuyết mẫu

File đính kèm:

  • pdfbai_giang_ly_thuyet_xac_suat_va_thong_ke_toan_chuong_5_cac_d.pdf
Tài liệu liên quan