Synthesis of SSZ-13 Zeolite in the Presence of N,N,NDimethylethylcyclohexyl Ammonium for Selective Catalytic Reduction of NOx

Abstract: Since NOx emission requirements from stationary and mobile sources are more strictly

regulated in the United States, Europe, and other countries; researchers have conducted many studies

to improve the performance of selective catalytic reduction (SCR) catalysts to meet more and more

stringent emission standards. Herein, we reported the synthesis of small pore zeolite (Cu)-SSZ-13

using N,N,N-dimethylethylcyclohexylammonium as the structure directing agent. The catalytic

activity of the fresh and hydrothermal aged copper exchanged supported on SSZ-13 catalyst was

investigated in the SCR of NOx using NH3 as a reductant. Cu-SSZ-13 possessing a high SCR

performance (NOx conversion reached approximately 100% at 250oC), and high hydrothermal

stability in combination with an easy synthesis route is considered to be a potential catalyst for SCR

application.

pdf8 trang | Chuyên mục: Hóa Học Hữu Cơ | Chia sẻ: yen2110 | Lượt xem: 200 | Lượt tải: 0download
Tóm tắt nội dung Synthesis of SSZ-13 Zeolite in the Presence of N,N,NDimethylethylcyclohexyl Ammonium for Selective Catalytic Reduction of NOx, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
 lượng N2O 
tăng ở nhiệt độ cao so với mẫu Cu-SSZ-13 ban 
đầu. Kết quả khảo sát cũng cho thấy vật liệu tổng 
hợp có độ chuyển hóa gần tương đương với xúc 
tác thương mại hóa chabazite (Cu-CHA hoặc 
Cu-SSZ-13 thương mại) [4,8,30]. 
4. Kết luận 
Zeolit SSZ-13 (Si/Al=10) được tổng hợp 
thành công với cấu trúc CHA (CHA framework) 
khi sử dụng cation định hướng cấu trúc N,N,N-
dimethylethylcyclohexylammonium với chi phí 
thấp hơn TMAda+. Vật liệu tổng hợp được có độ 
tinh thể cao, diện tích và thể tích mao quản lớn. 
Quan trọng hơn, zeolit Cu-SSZ-13 thể hiện các 
tính chất hóa học gần tương đương như vật liệu 
thương mại Cu-CHA/Cu-SSZ-13, với độ chuyển 
hóa NOx đạt gần 100% ở 250oC, lượng N2O hình 
thành thấp (~10 ppm), và độ bền thủy nhiệt 
tương đối cao. Sự kết hợp của hoạt tính xúc tác 
cao, chi phí tổng hợp thấp mang đến cơ hội cho 
các ứng dụng rộng rãi của zeolit SSZ-13 này 
trong các lĩnh vực hấp phụ, tách và xúc tác trong 
tương lai, đặc biệt cho xử lý khí thải NOx từ động 
cơ diesel. 
Lời cảm ơn 
Nghiên cứu này được tài trợ bởi Đại học 
Quốc gia Hà Nội trong đề tài mã số QG.19.09. 
Nhóm tác giả xin cảm ơn Đại học Delaware, 
Hoa Kỳ đã giúp đỡ thực hiện một số thí nghiệm 
phản ứng. 
Tài liệu tham khảo 
[1] Tian Peng, Wei Yingxu, Ye Mao, Liu Zhongmin, 
Methanol to Olefins (MTO): From Fundamentals 
to Commercialization. ACS Catalysis 5(3) (2015) 
1922-1938. https://doi.org/10.1021/acscatal.5b00007. 
[2] D. Chen, K. Moljord, A. Holmen, A methanol to 
olefins review: Diffusion, coke formation and 
deactivation on SAPO type catalysts. Microporous 
and Mesoporous Materials 164 (2012) 239-250. 
https://doi.org/10.1016/j.micromeso.2012.06.046. 
[3] Yashodhan Bhawe, Manuel Moliner-Marin, 
Jonathan D. Lunn, Yu Liu, Andrzej Malek, Mark 
Davis, Effect of Cage Size on the 
Selective Conversion of Methanol to Light 
Olefins. ACS Catalysis 2(12) (2012) 2490-2495. 
https:// doi.org/10.1021/cs300558x. 
[4] Feng Gao, Ja Hun Kwak, Janos Szanyi, 
Charles H. F. Peden, Current Understanding of Cu-
Exchanged Chabazite Molecular Sieves for Use as 
Commercial Diesel Engine DeNOx Catalysts. 
Topics in Catalysis 56(15-17) (2013) 1441-1446. 
https://doi.org/10.1007/s11244-013-0145-8. 
[5] S. Brandenberger, O. Kröcher, A. Tissler, R. 
Althoff, The State of the Art in Selective Catalytic 
Reduction of NOx by Ammonia Using Metal‐
Exchanged Zeolite Catalysts. Catalysis Reviews 
50(4) (2008) 493-498. https://doi.org/10.1080/01 
614940802480122. 
[6] A.M. Beale, F. Gao, I. Lezcano-Gonzalez, C.H.F. 
Peden, J. Szanyi, Recent advances in automotive 
catalysis for NOx emission control by small-pore 
microporous materials. Chemical Society Reviews 
44(20) (2015) 7371-7378. https://doi.org/10.1039/ 
C5CS00108K. 
[7] C. Paolucci, J.R. Di lorio, F.H. Ribeiro, R. 
Gounder, W.F. Schneider, Catalysis Science of 
NOx Selective Catalytic Reduction With 
Ammonia Over Cu-SSZ-13 and Cu-SAPO-34. 
Advances in Catalysis 59 (2016) 5-16. https://doi. 
org/10.1016/bs.acat.2016.10.002. 
[8] Guan Bin, Zhan Reggie, Lin He, Huang Zhen, 
Review of state of the art technologies of selective 
catalytic reduction of NOx from diesel engine 
exhaust. Applied Thermal Engineering 66(1) 
(2014) 396-411. https://doi.org/10.1016/j. applther 
maleng.2014.02.021. 
[9] J. Steven Schmieg, H. Se Oh, H. Chang Kim, B. 
David Brown, H. Jong Lee, H.F. Charles Peden, 
Do Heui Kim, Thermal durability of Cu-CHA 
NH3-SCR catalysts for diesel NOx reduction. 
Catalysis Today 184(1) (2012) 252-253. https:// 
doi.org/10.1016/j.cattod.2011.10.034. 
D.V. Long et al. / VNU Journal of Science: Natural Sciences and Technology, Vol. 36, No. 1 (2020) 1-8 
7 
[10] Taekyung Ryu, Nak Ho Ahn, Seungwan Seo, Jung 
Cho, Hyojun Kim, Donghui Jo, Gi Tae Park, 
Pyung Soon Kim, Chang Hwan Kim, Elliott L. 
Bruce, Paul A. Wright, In-Sik Nam, and 
Suk Bong Hong, Fully Copper-Exchanged High-
Silica LTA Zeolites as Unrivaled Hydrothermally 
Stable NH3-SCR Catalysts. Angewandte Chemie 
International Edition 56(12) (2017) 3256-3258. 
https://doi.org/10.1002/anie.201610547. 
[11] Manuel Moliner, Cristina Franch, Eduardo 
Palomares, Marie Grill and Avelino Corma, Cu-
SSZ-39, an active and hydrothermally stable 
catalyst for the selective catalytic reduction of 
NOx. Chemical Communications 48(66) (2012) 
8264-8266. https://doi.org/10.1039/C2CC33992G. 
[12] Nuria Martín, Cristian R. Boruntea, Manuel 
Moliner, Avelino Corma, Efficient synthesis of the 
Cu-SSZ-39 catalyst for DeNOx applications. 
Chemical Communications 51(55) (2015) 11031-
11032. https://doi.org/10.1039/C5CC03200H. 
[13] Kim Young Jin, Lee Jun Kyu, Min Kyung Myung, 
Hong Suk Bong, Nam In-Sik, Cho Byong K., 
Hydrothermal stability of CuSSZ13 for reducing 
NOx by NH3. Journal of Catalysis 311 (2014) 447. 
https://doi.org/10.1016/j.jcat.2013.12.012. 
[14] D.W. Fickel, R.F. Lobo, Copper Coordination in 
Cu-SSZ-13 and Cu-SSZ-16 Investigated by 
Variable-Temperature XRD. The Journal of 
Physical Chemistry C 114(3) (2010) 1633-1640. 
https://doi.org/10.1021/jp9105025. 
[15] Takushi Sonoda, Toshihiro Maruo, Yoshitaka 
Yamasaki, Nao Tsunoji, Yasuyuki Takamitsu, 
Masahiro Sadakane and Tsuneji Sano, Synthesis of 
high-silica AEI zeolites with enhanced thermal 
stability by hydrothermal conversion of FAU 
zeolites, and their activity in the selective catalytic 
reduction of NOx with NH3. Journal of Materials 
Chemistry A 3(2) (2015) 857-865. https://doi.org/ 
10.1039/C4TA05621C. 
[16] G. Blakeman Philip, M. Burkholder Eric, Chen 
Hai-Ying, E. Collier Jillian, M. Fedeyko Joseph, 
Jobson Hoi, R. Rajaram Raj, The role of pore size 
on the thermal stability of zeolite supported Cu 
SCR catalysts. Catalysis Today 231(2014) 56-63. 
https://doi.org/10.1016/j.cattod.2013.10.047. 
[17] C.M. Baerlocher, L.B. Database of Zeolite 
Structures.  
2017. 
[18] J.V. Smith, Crystal structures with a chabazite 
framework. I. Dehydrated Ca-chabazite. Acta 
Crystallographica 15(9) (1962) 838-843. https:// 
doi.org/10.1016/j.micromeso.2013.07.033. 
[19] S.I. Zones, Conversion of faujasites to high-silica 
chabazite SSZ-13 in the presence of N,N,N-
trimethyl-1-adamantammonium iodide. Journal of 
the Chemical Society, Faraday Transactions 
87(22) (1991) 3710-3715. https://doi.org/ 10.1039/ 
FT9918703709. 
[20] Ruinian Xu, Runduo Zhang, Ning Liu, Biaohua 
Chen, and Shi Zhang Qiao, Template Design and 
Economical Strategy for the Synthesis of SSZ-13 
(CHA-Type) Zeolite as an Excellent Catalyst for 
the Selective Catalytic Reduction of NOx by 
Ammonia. ChemCatChem 7(23) (2015) 3842-
3843. https://doi.org/10.1002/cctc.201500771. 
[21] G. Cao, J.F. Brody, M.J. Shah, Light olefin selective 
oxygenate conversion process using CHA 
framework type aluminosilicate. https://patents. 
google.com/patent/US7772335B1/en, 2010. 
[22] Guang Cao, Machteld M. Mertens, Anil S. Guram, 
Hailian Li, Jeffrey C. Yoder, Synthesis of 
chabazite-containing molecular sieves and their 
use in the conversion of oxygenates to olefins. 
https://patents.google.com/patent/US7754187B2/
en, 2012. 
[23] D. Trong Pham, R. Matthew Hudson, M. Craig 
Brown, F. Raul Lobo, Molecular Basis for the 
High CO2 Adsorption Capacity of Chabazite 
Zeolites. ChemSusChem 7(11) (2014) 3031-3037. 
https://doi.org/10.1002/cssc.201402555. 
[24] M.A. Camblor, L.A. Villaescusa, M.J. Díaz-
Cabañas, Synthesis of all-silica and high-silica 
molecular sieves in fluoride media. Topics in 
Catalysis 9(1-2) (1999) 62-65. https://doi.org/10. 
1023/A:1019154304344. 
[25] G. Delahay, B. Coq, S. Kieger, B. Neveu, The 
origin of N2O formation in the selective catalytic 
reduction of NOx by NH3 in O2 rich atmosphere on 
Cu-faujasite catalysts. Catalysis Today 54(4) 
(1999) 434-437. https://doi.org/10.1016/S0920-
5861(99)00206-0. 
[26] Norman Wilken, Kurnia Wijayanti, Krishna 
Kamasamudram, W. Neal Currier, Ramya 
Vedaiyan, Aleksey Yezerets, Louise Olsson, 
Mechanistic investigation of hydrothermal aging 
of Cu-Beta for ammonia SCR. Applied Catalysis 
B: Environmental 111(2012) 60-61. https://doi. 
org/10.1016/j.apcatb.2011.09.018. 
[27] Jixing Liu, Weiyu Song, Chi Xu, Jian Liu, Zhen 
Zhao, Yuechang Wei, Aijun Duan and Guiyuan 
Jiang, The selective catalytic reduction of NOx 
over a Cu/ZSM-5/SAPO-34 composite catalyst. 
RSC Advances 5(127) (2015) 104923-104924. 
https://doi.org/10.1039/C5RA22234F. 
D.V. Long et al. / VNU Journal of Science: Natural Sciences and Technology, Vol. 36, No. 1 (2020) 1-8 
8 
[28] Oana Mihai, R. Catur Widyastuti, Stanislava 
Andonova, Krishna Kamasamudram, Junhui Li, 
Saurabh Y. Joshi, Neal W. Currier, Aleksey Yezerets, 
Louise Olsson, The effect of Cu-loading on different 
reactions involved in NH3-SCR over Cu-BEA 
catalysts. Journal of Catalysis 311 (2014) 174-175. 
https://doi.org/10.1016/j.jcat.2013.11.016. 
[29] A.R. Ravishankara, J.S. Daniel, R.W. Portmann, 
Nitrous Oxide (N2O): The Dominant Ozone-
Depleting Substance Emitted in the 21st Century. 
Science 326(5949) (2009) 123-125. https://doi. 
org/10.1126/science.1176985. 
[30] Hai-Ying Chen, Cu/Zeolite SCR Catalysts for 
Automotive Diesel NOx Emission Control, Urea-
SCR Technology for deNOx After Treatment of 
Diesel Exhausts (2014) 125-127. https://doi.org/ 
10.1007/978-1-4899-8071-7_5. 
[31] Ja Hun Kwak, G. Russell Tonkyn, Do Heui Kim, 
János Szanyi, H.F. Charles Peden, Excellent 
activity and selectivity of Cu-SSZ-13 in the 
selective catalytic reduction of NOx with NH3. 
Journal of Catalysis 275(2) (2010) 187-189. 
https://doi.org/10.1016/j.jcat.2010.07.031. 
[32] Ja Hun Kwak, G. Russell Tonkyn, Do Heui Kim, 
János Szanyi, H.F. Charles Peden, A comparative 
study of N2O formation during the selective 
catalytic reduction of NOx with NH3 on zeolite 
supported Cu catalysts. Journal of Catalysis 329 
(2015) 495-497. https://doi.org/10.1016/j.jcat. 2015. 
06.016.

File đính kèm:

  • pdfsynthesis_of_ssz_13_zeolite_in_the_presence_of_nnndimethylet.pdf