Suspension system for automobiles
ONTENTS
MATHEMATICAL MODELING
INTRODUCTION
PID CONTROLLER
SIMULATE THE SYSTEM USING MATLAB
CONCLUDING REMAR
Tóm tắt nội dung Suspension system for automobiles, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
SUSPENSION SYSTEM FOR AUTOMOBILES Instructor: Assoc. Dr. Huỳnh Thái Hoàng GROUP 6: 1. Trần Đạo Long 2 Lê T Hữ. rọng u 3. Nguyễn Thái Việt 4. Nguyễn Thanh Bình CONTENTS MATHEMATICAL MODELING INTRODUCTION PID CONTROLLER SIMULATE THE SYSTEM USING MATLAB CONCLUDING REMARKS INTRODUCTION Suspension systems have been widely applied to vehicles, right from the horse-drawn carriage with flexible leaf springs fixed at h f h d bil i h lt e our corners, to t e mo ern automo e w t comp ex control algorithms. INTRODUCTION The main task of a vehicle suspension is to ensure ride comfort and road holding for a variety of road conditions. INTRODUCTION Suspension system Passive Active Suspension System: Can not be controlled Suspension System: Can be controlled INTRODUCTION A typical suspension system used in automobiles MATHEMATICAL MODELING PASSIVE ACTIVE Text Text Suspension Text Text Text Text system MATHEMATICAL MODELING Active Suspension System B : damping coefficient, N s/m F : actuator force, kN K spring stiffness kN/m1 : , K2 : tire stiffness, kN/m m1 : quarter car sprung mass, kg m : unsprung mass kg2 , R : road profile, m X1 : sprung mass vertical displacement, m X2 : unsprung mass vertical displacement, m X1-x2 : suspension travel, m x2-r : tire deflection, m MATHEMATICAL MODELING 1 1 1 2 1 1 2( ) ( ) 0m x B x x K x x F For sprung mass m1: 2 2 2 1 1 2 1 2 2( ) ( ) ( ) 0m x B x x K x x K x r F For unsprung mass m2 MATHEMATICAL MODELING Taking Laplace transform for the equations of active suspension: 2 1 1 1 2 1 1 2 2 2 2 2 1 1 2 1 2 2 . . ( . . ) ( ) ( ) 0 . . ( . . ) ( ) ( ( )) ( ) 0 m s X B s X s X K X X F s m s X B s X s X K X X K X R s F s 2 11 1 1 2 21 2 1 2 ( ) ( ). ( ) ( ) ( )( ) . X s F sm s Bs K Bs K X s F sBs K m s Bs K K 2 2 2 1 1 2 1 2 1det ( . )( . ) ( )m s Bs K m s Bs K K Bs K 2 1 2 2( ) ( . ) ( ) det X s m s K F s 2 2 1( ) . ( ) det X s m s F s 2 www.themegallery.com Company Logo 1 2 1 2 2( ) ( ) ( ). ( ) det X s X s m m s K F s MATHEMATICAL MODELING 2 11 1 1 2 ( ) 0. ( ) ( ) ( )( ) X sm s Bs K Bs K X K R 2 21 2 1 2 .. s sBs K m s Bs K K 1 2 1( ) ( . ) ( ) det X s K B s K R s 2 2 2 1 1( ) ( . . ) ( ) det X s K m s B s K R s 2( ) ( )X X K1 2 2 1. . ( ) det s s m s R s www.themegallery.com Company Logo MATHEMATICAL MODELING Finding suspension travel ( car body displacement): 1 2( ) ( ) ( ) ( )F s F s X s X s 1 2 2 9 2 2 1 . ( ) ( ) ( ) ( ) . . 4 6 .1 0 . R s X s X s R s K m s s 2 2 1 2 2( ) . 3 0 0 . 1 9 6 0 0 0m m s K s MATHEMATICAL MODELING Finding the sprung mass displacement: 1 2 1 2 1 2 2 ( ) ( ) ( ) de t .( . ). . ( ) ( ) ( ) . de t F s F s X s K B s K R s X s R s m s K 6 5 2 1 2 2 2 2 .( . ) 196 .10 . 36456 .10 . 50 . 196000 K B s K s m s K s PID CONTROLLER PID controller involves 3 separate controllers: proportional, integral and derivative. PID CONTROLLER Effects of PID controller : Speed up response of the system Eliminate steady – state error to step input PID CONTROLLER Zeigler‐Nichols rules for tuning PID controllers: ( ). ( ) ( ) t PID P I D de tG K e t K e t dt K d ( ) O t P t K de t. ( ) ( ) .P P D I O K e t e t dt K T T dt PID CONTROLLER Zeigler and Nichols suggested that we set the values of the parameter KP , TI, and TD according to the formula shown in Table We choose : KP= 3055; KD= 32060 and KI=0.7 for suspension system S O SIMULATI N AND RE ULT SIMULATION AND RESULT Pot holes www.themegallery.com Company Logo S O S RESULTS FOR STEP INPUT: IMULATI N AND RE ULT Sprung mass displacement (Pot hole) S O SIMULATI N AND RE ULT Sprung mass acceleration Vs time (Pot hole) S O SIMULATI N AND RE ULT Suspension travel Vs time (Pot hole) www.themegallery.com Company Logo 2 Bumpy road (sinusoidal input). www.themegallery.com Company Logo Sprung mass displacement www.themegallery.com Company Logo Sprung mass acceleration Vs time www.themegallery.com Company Logo Suspension travel Vs time www.themegallery.com Company Logo www.themegallery.com Company Logo 3.Random road Sprung mass displacement Sprung mass acceleration Vs time www.themegallery.com Company Logo Suspension travel Vs time www.themegallery.com Company Logo CONCLUDING REMARKS The PID controller is designed for active suspension system. A quarter car vehicle model with two-degrees-of- f d h b d l d Zi l Ni h l t i lree om as een mo e e . eg er- c o s un ng ru es are used to determine proportional gain, reset ate and derivative time of PID controllers. The system is developed for bumpy road, pot hole and random road inputs. The simulated results prove that, active suspension t ith PID t l i id f tsys em w con ro mproves r e com or REFERENCES Development of Active Suspension System for Automobiles using PID Controller- Mouleeswaran Senthil kumar, Member, IAENG. Design and Development of PID Controller-Based Active Suspension System for Automobiles- Senthilkumar Mouleeswaran- Department of Mechanical Engineering PSG College of Technology Coimbatore,India. Constructing Control System for Active Suspension System - Sayel M. Fayyad- Department of Mechanical Engineering Faculty of Engineering Technology PO Box 15008, Al Balqa Applied University Amman, Jordan. Vib ti C t l f B S i S t i PI d PID C t ll Sh ilra on on ro o us uspens on ys em us ng an on ro er- e za Jain-Assistant Professor, Electronics Department YMCA University of Science and Technology Faridabad, India. Electromagnetic Suspension System: Circuit and Simulation SuleimanAbu Ein and - - Sayel M. Fayyad
File đính kèm:
- suspension_system_for_automobiles.pdf