Signal & Systems - Lecture 12 - Trần Quang Việt

6.4. Ứng dụng trong hồi tiếp và điều khiển

6.4.1. Vài ng dng ca hthng hi tiếp

6.4.2. Cơ bn vhthng điu khin tự động

 a) Thc hin hthng nghch đảo ca hthng LTI

b) Gim nh hưởng ca sthay đổi thông shthng

c) Tuyến tính hóa hthng phi tuyến

d) n định cho hthng LTI không n định

pdf18 trang | Chuyên mục: Xử Lý Tín Hiệu Số | Chia sẻ: tuando | Lượt xem: 592 | Lượt tải: 0download
Tóm tắt nội dung Signal & Systems - Lecture 12 - Trần Quang Việt, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
 (t)=(1- e + e )u(t)
• K=80: o 2
80
θ (s)=
s(s +8s+80)
-4t 05
2oθ (t)=[1- e cos(8t+153 )]u(t)
• K=16: o 2
16
θ (s)=
s(s +8s+16)
-4t
oθ (t)=[1-(4t+1)e ]u(t)
2
KT(s)=
s +8s+K
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
a) Phân tích một hệ thống điều khiển đơn giản
21%PO =
pt
10%
90%
rt
 st
Không có
PO và tp
within 2% the FV
• PO: percentage-overshoot • tp: peak time
• tr: rise time • ts: settling time
Nhiệm vụ: Tìm giá trị của K để đạt yêu cầu mong muốn
7Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
a) Phân tích một hệ thống điều khiển đơn giản
 Phân tích xác lập: sai số xác lập
 Với θi(t)=u(t): p
s 0
K = lim [KG(s)]
→
đặt ( hằng số sai số vị trí)
i oe(t)=θ (t)-θ (t) i o iE(s)=θ (s)-θ (s)=θ (s)[1-T(s)]
ss
t
e lim e(t)
→∞
= ss
s 0
e lim sE(s)
→
=
i
1
=θ (s)
1+KG(s)
ss s
s 0 p
1/s 1
e =e = lim s =
1+KG(s) 1+K→
 Với θi(t)=tu(t): v
s 0
K = lim s[KG(s)]
→
đặt (hằng số sai số vận tốc)
2
ss r
s 0 v
1/s 1
e =e = lim s =
1+KG(s) K→
i
s 0
θ (s)
= lim s
1+KG(s)→
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
a) Phân tích một hệ thống điều khiển đơn giản
 Với θi(t)=0.5t2u(t): 2a
s 0
K = lim s [KG(s)]
→
đặt (hằng số sai số gia tốc)
3
ss p
s 0 a
1/s 1
e =e = lim s =
1+KG(s) K→
 Cụ thể cho hệ thống đang xét: G(s)=1/s(s+8)
p
s 0
K = lim [KG(s)]
→
= ∞
v
s 0
K = lim s[KG(s)]
→
K/8=
2
a
s 0
K = lim s [KG(s)]
→
0=
se =0
re =8/K
pe =∞
Hệ thống này còn gọi là hệ thống điều khiển vị trí, có thể dùng để
điều khiển vận tốc, không thể dùng để điều khiển gia tốc!!!
Nhiệm vụ: Tìm giá trị của K và các khâu hiệu chỉnh để hệ thống
trên có thể điều khiển cả 3 loại!!! + bảo đảm yêu cầu quá độ!!!
8Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
b) Phân tích tích quá độ hệ thống bậc 2
 Mục đích: xác định nhanh chóng các thông số (PO, tr, ts) của hệ
thống bậc 2 với T(s) không có điểm zero dựa vào vị trí của các
poles của nó. 
 Tại sao chỉ xét cho hệ thống bậc 2 này: cơ sở cho các hệ thống bậc
cao hơn nếu thỏa một số nguyên tắc:
2
n
2 2
n n
ωT(s)=
s +2ζω s+ω
 Bố trí các poles khác ở rất xa trục ảo (jω) so với cực của hệ thống
bậc 2 chứa trong hàm truyền vòng kín T(s) của hệ thống bậc cao
này.
 Bố trí các cặp pole-zero ở rất gần nhau
Khi đó đáp ứng quá độ của hệ thống bậc cao gần giống như của
hệ thống bậc 2 có trong hàm truyền vòng kín T(s) của nó
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
b) Phân tích tích quá độ hệ thống bậc 2
 Vị trí các poles của hệ thống bậc 2:
2
n
2 2
n n
ωT(s)=
s +2ζω s+ω
2
1,2 n ns = ζω jω 1 ζ− ± −
2
nω 1 ζ−
nζω−
nω
2
nω 1 ζ− −
jω
σ
s-plane
1cos ζ−
1s
2s
2
n
2 2
n n
1 ωY(s)=
s s +2ζω s+ω
 Đáp ứng quá độ: n2 2
n n
1 s+2ζω
=
s s +2ζω s+ω
−
nζω t 2 -1
n2
1y(t)=[1 sin(ω 1 ζ t+cos ζ)]u(t)
1 ζ
e
−
− −
−
9Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
b) Phân tích tích quá độ hệ thống bậc 2
1ζ <
dt
0.5
0.1
0
0.9
1
( )py t ( )y t
r
t
pt st t
4
s
n
t ζω=
21
p
n
t
pi
ω ζ= −
2/ 1100PO e ζpi ζ− −=
21 0.4167 2.917
r
n
t
ζ ζ
ω
− +
≈
21.1 0.125 0.469
d
n
t
ζ ζ
ω
+ +
≈
nζω t 2 -1
n2
1y(t)=[1 sin(ω 1 ζ t+cos ζ)]u(t)
1 ζ
e
−
− −
−
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
b) Phân tích tích quá độ hệ thống bậc 2
2/ 1100PO e ζpi ζ− −=
4
s
n
t ζω=
21 0.4167 2.917
r
n
t
ζ ζ
ω
− +
≈
10
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
b) Phân tích tích quá độ hệ thống bậc 2
2
2−
4−
6−
4
6
σ
jω
0
 Ví dụ: 2
( )( ) [1 ( )] 8
KG s KT s
KG s s s K
= =
+ + +
Yêu cầu thiết kế: chọn K sao cho PO≤16%, tr≤0.5s, ts≤2s?
16%; 0.5; 2
r sPO t t≤ ≤ ≤
 Xác định miền cho phép của các poles
 Xác định quỹ tích các poles khi K
thay đổi (quỹ đạo nghiệm số)
2 8 0s s K+ + =
1,2 4 16s K⇒ = − ± −
 Xác định giá trị của K
25 64K≤ ≤
2−
2st =16%PO =
0.5
r
t =
4−
16K =
0K = 0K =
64K =
64K =
25K =
25K =
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
c) Quỹ đạo nghiệm số
 Xét hệ thống với hệ số khuếch đại K thay đổi như sau:
KG(s)T(s)=
1+KG(s)H(s)
 + K G(s)
H(s)
F(s) Y(s)
−
Phương trình đặc trưng của hệ thống: 1+KG(s)H(s)=0
Chúng ta sẽ khảo sát quỹ đạo của nghiệm phương trình đặc trưng
(poles của hệ thống) khi K thay đổi từ 0 đến ∞  Quỹ đạo nghiệm số.
Hàm truyền vòng kín của hệ thống:
11
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
c) Quỹ đạo nghiệm số
Giá trị của s trong mp-s làm cho hàm truyền vòng hở KG(s)H(s) 
bằng -1 chính là các poles của hàm truyền vòng kín
( ) ( ) ( ) ( ) 101 −=⇔=+ sHsKGsHsKG
( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( )
0
1
180 2 1
1
180 2 1o
KG s H s
KG s H s l
G s H s K
G s H s l
 =
⇒ 
∠ = ± +
 =
⇔ 
∠ = ± +
Independent of K
,,,l 210=
,,,l 210=
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
c) Quỹ đạo nghiệm số
 Quỹ đạo nghiệm số được phác họa tuân theo các quy luật sau:
Vẽ quỹ đạo nghiệm số của hệ thống sau khi K thay đổi
 + K 1
s(s+1)(s+2)F(s) Y(s)
−
Áp dụng các quy luật dùng ví dụ sau:
12
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
c) Quỹ đạo nghiệm số
Luật #1
Giả sử G(s)H(s) có n poles và m zeros:
n nhánh của quỹ đạo nghiệm bắt đầu (K=0) tại n poles.
m trong n nhánh kết thúc (K=∞) tại m zeros
n-m nhánh còn lại kết thúc ở vô cùng theo các đường
tiệm cận. 
Bước 1: Vẽ n poles và m zeros của G(s)H(s) dùng ký hiệu
x và o
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
c) Quỹ đạo nghiệm số
Áp dụng bước #1
( ) ( ) ( )( )21
1
++
=
sss
sHsG
Vẽ n poles và m zeros của
G(s)H(s) dùng ký hiệu x và o
 Có 3 poles:
0 1 2s , s , s= = − = −
 Không có zero
13
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
c) Quỹ đạo nghiệm số
Luật #2
Các điểm trên trục thực thuộc quỹ đạo nghiệm khi bên
phải nó có tổng số poles thực và zeros thực của
G(s)H(s) là một số lẽ
Bước #2: Xác định các nghiệm trên trục thực. Chọn
điểm kiểm tra tùy ý. Nếu tổng số của cả poles thực và
zeros thực bên phải của điểm này là lẽ thì điểm đó
thuộc quỹ đạo nghiệm số.
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
c) Quỹ đạo nghiệm số
Áp dụng bước #2
14
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
c) Quỹ đạo nghiệm số
Giả sử G(s)H(s) có n poles và m zeros:
Các nghiệm s có giá trị lớn phải tiệm cận theo đường thẳng
bắt đầu tại điểm trên trục thực:
theo hướng của góc:
( )180 2 1o
n m
φ ± +=
−


0
i i
n m
p z
s
n m
σ
−
= =
−
∑ ∑
Luật #3
Bước #3: Xác định n - m tiệm cận của các nghiệm. Tại s = σ0
trên trục thực. Tính và vẽ các đường tiệm cận theo góc φℓ
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
c) Quỹ đạo nghiệm số
Áp dụng bước #3
1 2 3
0
0 1 2 1
3 0 3
p p p
s σ
+ + − −
= = = = −
−
( )1 8 0 2 1
n m
φ ± +=
−


( )
( )






±=
−
+×±
=
±=
−
+×±
=
⇒
0
0
1
0
0
0
180
03
112180
60
03
102180
φ
φ
0 1 2, , ,= 
15
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
c) Quỹ đạo nghiệm số
Luật #4
Điểm tách phải thỏa điều kiện sau:
Phương trình đặc trưng của hệ thống có thể viết là: KG(s)H(s) = -1
0=
ds
dK
Bước #4: xác định điểm tách. Biểu diễn K dưới dạng:
( ) ( ) .sHsGK
1−
=
Tính và giải dK/ds=0 để tìm pole là điểm tách
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
c) Quỹ đạo nghiệm số
Áp dụng bước #4
2
1 2
3 6 2 0
1 5774 0 4226
s s
s . , s .
⇒ − − − =
= − = −
( )( )
sssK
sss)s(H)s(GK
23
211
23
−−−=
++−=
−
=
3 23 2dK / ds s s s= − − −
16
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
c) Quỹ đạo nghiệm số
Bước #5
Vẽ n-m nhánh kết thúc ở vô cùng dọc theo các
đường tiệm cận
jω?
- jω
ωjs =
( ) ( ) 01 =+ sHsKG
0 2orω ω⇒ = = ±
Cho:
Thế vào:
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
d) Hiệu chỉnh hệ thống dùng quỹ đạo nghiệm số
 Trong ví dụ phần 6.4.2a ta thấy:
r p; e =8/K; e =∞
Nếu yêu cầu thiết kế là er<0.125?
2
2−
4−
6−
4
6
σ
jω
02−
2st =16%PO =
0.5
r
t =
4−
16K =
0K = 0K =
64K =
64K =
25K =
25K =
Dời sang trái
0
i i
n m
p z
s
n m
σ
−
= =
−
∑ ∑
( )c
sG s
s
α
β
+
=
+
Bộ điều
chỉnh
Nối tiếp G(s) với Gc(s):
se =0
 Trong ví dụ phần 6.4.2b ta thấy để đạt được các yêu cầu: 
PO≤16%, tr≤0.5s, ts≤2s thì 25≤K≤64
17
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
d) Hiệu chỉnh hệ thống dùng quỹ đạo nghiệm số
 Hệ thống có bộ điều chỉnh:
+ cG (s) K G (s)F (s) Y (s)
−
1G(s)=
s(s+8) r s s r; PO 16%; t 0.5; t 2; e =0; e 0.05≤ ≤ ≤ ≤
Ví dụ:
8( )
30c
sG s
s
+
=
+ c
KKG (s)G(s)=
s(s+30)
re =8/K 0.05 K 160≤ ⇒ ≥
Giả sử chọn:
Và chọn K=600 2
600T(s)=
s +30s+600
-30
jω
σ
0
-15
PO=16%
K=900
K=900
PO=16%
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
d) Hiệu chỉnh hệ thống dùng quỹ đạo nghiệm số
nω = 600 n; ζω =15 0.61ζ =
s
n
4
t = =4/15=0.266<2
ζω
PO=8.9%<16%
rt =0.0747<0.5
se =0
re =0.05
Đạt được mọi yêu cầu thiết kế!!!
18
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
d) Hiệu chỉnh hệ thống dùng quỹ đạo nghiệm số
 Gc(s)=1/s (bố trí pole tại 0) sẽ bảo đảm cải thiện chất lượng
xác lập. Tuy nhiên lại làm giảm chất lượng quá độ, và tính ổn
định của hệ thống!!! Để dung hòa người ta chọn Gc(s) như sau:
( )c
sG s
s
α
β
+
=
+
α và β chọn rất nhỏ và tỷ số α/β rất lớn
0
i i
n m
p z
s
n m
σ
−
= =
−
∑ ∑
( ) ( )p p c pcK =K .G (0)= α/β K
( ) ( )v v c vcK =K .G (0)= α/β K
( )s sc
p c p
1 1
e = <e =
1+(K ) 1+K
( )r v c r vce =1/(K ) <e =1/K
( )p a c p ace =1/(K ) <e =1/K
hầu như không thay đổi
( ) ( )a a c acK =K .G (0)= α/β K

File đính kèm:

  • pdfsignal_systems_lecture_12_tran_quang_viet.pdf