Nghiên cứu thực nghiệm để đánh giá ảnh hưởng của các thông số công nghệ đến chiều sâu thấm nhiệt phôi thép 9XC qua tôi sau khi gia nhiệt bằng laser
Abstract
Laser assisted turning (LAT) is using a laser beam to preheat the workpiece before turning [1]. In order to
verify the influences of parameters on the depth of osmotic heating after laser heating 9XC hardened alloy
steel (62 HRC hardness), various parameters such as: laser power, distance of laser tip to the workpiece,
laser position, cutting speed and feed rate had been sellected using Taguchi experimental method. The
results shows that the laser power is strongly affect to the depth of osmotic heating of 91,27 % comparing
with the others of laser source’s pararmeters. Besides that the effect of cutting parameters on depth of
osmotic heating was 95,69 % of cutting speed and 4,31 % of feed rate, respectively. From experimetal
results, a formula for the surface layer as a function of laser power and cutting speed had also been
constructed. Results confirmed that permeability characteristic shows a minor change with increasing of
cutting speed, whereas laser power demonstrates a significant effect on permeability characteristic
). Các phoi có nhiệt độ cao này sẽ bắn vào đầu laser nên cần được hạn chế khoảng cách tối thiểu; Bên canh đó, nếu để đầu laser cách xa bề mặt phôi lớn với khoảng cách (h>25mm), nhiệt độ bề mặt phôi thấp và tính chất phần vật liệu bề mặt chi tiết gia công gần như không bị ảnh hưởng. Do đó nghiên cứu đã chọn khoảng giới hạn 15h25 để tiến hành các thí nghiệm khảo sát. Các thông số chế độ cắt v = 62,5 m/ph, s = 0,12 mm/vg được giữ không đổi. Từ bảng 1, với 3 thông số đầu vào thay đổi với 3 mức thí nghiệm, chọn bảng trực giao Taguchi L9 [2] như bảng 3. Để xét ảnh hưởng của các yếu tố đầu vào có điều khiển là công suất laser, khoảng cách đầu laser đến bề mặt phôi, và vị trí điểm đặt laser; sử dụng hệ số tín hiệu SN (signal to noise ratio) với trường hợp yêu cầu lớn nhất về chiều sâu thấm nhiệt như công thức (1). 2 1 1 1 10log iN i ii i SN N y= = − (1) Hệ số SN được tính toán cho mỗi chỉ số và cấp độ, lập bảng hệ số SN của 3 thông số 3 mức và xếp hạng theo tiêu chí lớn hơn tốt hơn như trong bảng 4. Qua đó có thể thấy rằng khoảng cách từ đầu laser đến bề mặt phôi và vị trí điểm đặt laser trên phôi ảnh hưởng rất nhỏ tương ứng là 6,12% và 2,61% so với thông số công suất laser (91,27%) đến chiều sâu thấm nhiệt. Từ kết quả phân tích cho thấy, bộ thông số laser hợp lý để đảm bảo đạt được chiều sâu thấm nhiệt lớn nhất là (P3, h2, 1) ứng với công suất laser 330W, khoảng cách từ đầu laser đến bề mặt phôi là 20mm và vị trí đặt điểm laser nằm ở góc 70o Bảng 3. Bảng trực giao Taguchi L9 với các thông số thí nghiệm và hệ số SNL TN PL (W) h (mm) (o) Lần đo hth1 (mm) Lần đo hth2 (mm) Lần đo hth3 (mm) hthTB (mm) SNL 1 270 15 70 0,06 0,05 0,05 0,053 -20,74 2 270 20 80 0,07 0,06 0,07 0,067 -18,71 3 270 25 90 0,02 0,04 0,02 0,027 -26,60 4 300 15 80 0,1 0,11 0,11 0,107 -14,64 5 300 20 90 0,14 0,14 0,12 0,133 -12,75 6 300 25 70 0,12 0,13 0,11 0,12 -13,65 7 330 15 90 0,2 0,21 0,21 0,207 -8,91 8 330 20 70 0,23 0,25 0,24 0,24 -7.62 9 330 25 80 0,2 0,19 0,2 0,197 -9,34 Tạp chí Khoa học và Công nghệ 125 (2018) 035-040 38 Bảng 4. Hệ số SN của 3 thông số 3 mức và xếp hạng theo tiêu chí lớn hơn tốt hơn Mức P h 1 -22,0167 -14,7633 -14,0033 2 -13,6800 -13,0267 -14,2300 3 -8,6233 -16,5300 -16,0867 R2tb 274,4539 18,4101 7,8393 Phân bố 0,9127 0,0612 0,0261 3.3. Đánh giá mức độ ảnh hưởng của các thông số chế độ cắt đến chiều sâu thấm nhiệt Tiến hành thí nghiệm với bộ thông số hợp lý của nguồn laser đã được lựa chọn trước đó và giữ không thay đổi công suất laser 330W, khoảng cách từ đầu laser đến bề mặt phôi là 20mm, vị trí đặt điểm laser nằm ở góc 70o. Theo như bảng 2 với 2 thông số đầu vào là tốc độ cắt, lượng tiến dao thay đổi và 3 mức thí nghiệm lựa chọn bảng trực giao Taguchi L9 được kết quả như bảng 5. Bảng 5. Bảng trực giao Taguchi L9 với các thông số thí nghiệm và hệ số SNL TN V (m/ph) s (mm/vg) Lần đo hth1 (mm) Lần đo hth2 (mm) Lần đo hth3 (mm) hthTB (mm) SNL 1 25 0,06 0,38 0,36 0,38 0,37 -3,8648 2 25 0,12 0,37 0,36 0,35 0,36 -4,1027 3 25 0,18 0,34 0,35 0,36 0,35 -4,3474 4 62,5 0,06 0,25 0,28 0,27 0,27 -6,6015 5 62,5 0,12 0,23 0,25 0,24 0,24 -7,6245 6 62,5 0,18 0,21 0,20 0,21 0,21 -8,7844 7 100 0,06 0,19 0,20 0,20 0,20 -9,2081 8 100 0,12 0,20 0,18 0,18 0,19 -9,6537 9 100 0,18 0,17 0,19 0,18 0,18 -10,1234 Để xét ảnh hưởng của các yếu tố đầu vào khi thay đổi vận tốc cắt, lượng tiến dao; với trường hợp yêu cầu lớn nhất về chiều sâu lớp bề mặt công thức (1) vẫn được sử dụng. Hệ số SN được tính toán cho mỗi chỉ số và cấp độ như trong bảng 6. Kết quả chỉ ra rằng thông số tốc độ cắt có ảnh hưởng là 95,69% và lớn hơn ảnh hưởng của của lượng tiến dao là 4,31% đến chiều sâu lớp bề mặt một cách rõ rệt. Bộ thông số chế độ cắt hợp lý để đảm bảo đạt được chiều sâu lớp bề mặt lớn nhất là (v1, s1) ứng với vật tốc cắt là 25 (m/ph) và lượng tiến dang 0,06 (mm/vòng). Bảng 6. Hệ số SN của 2 thông số 3 mức và xếp hạng theo tiêu chí lớn hơn tốt hơn Mức v s 1 -4,105 -6,558 2 -7,670 -7,127 3 -9,662 -7,752 R2tb 47,5575 2,1400 Phân bố 0,9569 0,0431 3.4. Xây dựng mô hình toán học chiều sâu thấm nhiệt khi tiện có gia nhiệt bằng laser thép 9XC Theo kết quả đánh giá mức độ ảnh hưởng của các thông số ở trên (bảng 4 và bảng 6), các thông số ảnh hưởng chính đến chiều sâu thấm nhiệt là công suất laser và tốc độ cắt. Sử dụng phương pháp quy hoạch thực nghiệm trực giao [6] để xây dựng mô hình toán học mô tả mối quan hệ giữa chiều sâu thấm nhiệt với các tham số ảnh hưởng chính. Số thí nghiệm cần thực hiện N = 22 = 4; các chi tiết thí nghiệm sau gia nhiệt được cắt, mài, đánh bóng, tẩm thực dung dịch 3%HNO3. Cấu trúc lớp bề mặt quan sát trên kính hiển vi, kết quả chiều sâu thấm nhiệt cho trong bảng 8. Bảng 7. Điều kiện quy hoạch thực nghiệm Đặc tính P (w) V (vg/ph) Giá trị cơ sở 300 62,5 Khoảng biến động 30 37,5 Giá trị trên 330 100 Giá trị dưới 270 25 Bảng 8. Ma trận quy hoạch thực nghiệm TT X1 X2 X1 (w) X2 (m/ph) hth (mm) 1 - - 270 25 0,14 2 + - 330 25 0,37 3 - + 270 100 0,02 4 + + 330 100 0,20 Phương trình hồi quy được viết dưới dạng công thức (2) 2211 xbxbby o ++= (2) x1, x2 có quan hệ với Po, vo, (Giá trị cơ sở tại tâm thí nghiệm) như công thức (3) Tạp chí Khoa học và Công nghệ 125 (2018) 035-040 39 ;11 = − = P PP x oL ;12 = − = v vv x o (3) Căn cứ vào số liệu bảng 8 ta có tính được: bo= 0,183; b1 = 0,103; b2 = -0,073 Để kiểm tra tính có nghĩa của các hệ số này, ta cần làm các thí nghiệm tại tâm. Bảng 9. Kế hoạch thực nghiệm tại tâm TT P V hth TN1 300 62,5 0,155 TN2 300 62,5 0,160 TN3 300 62,5 0,165 hthTB = 0,160 = −= − = 3 1 622 10.125,3 13 1 i iy ss 4 62 10.84,8 4 10.125,3 − − === N s s y b Theo phụ lục 15 [6] chọn t = 9,925 khi f=m-1=2 với xác suất tin cậy p = 0,99. Như vậy: Sb.t=8,84.10-4.9,925 =87.10-4 So sánh sb.t với các hệ số ta thấy: bo= 0,183 Sb.t; b1= 0,103Sb.t; b2= 0,073 Sb.t. Các kết quả này chứng tỏ rằng các hệ số b đều có nghĩa và phương trình hồi quy có dạng: 21 073,0103,0183,0 xxy −+= Để xác định xem phương trình hồi quy vừa nhận được có nghĩa hay không cần tính các giá trị của hàm y : ;153,01 =y ;3559,02 =y ;007,03 =y ;213,04 =y Theo công thức 11.14 [6] ta có: ( ) 4 8 1 22 10.28,6 1 − = =− − = i tt i tn idu yy KN s Chỉ tiêu Fisher Fb theo công thức 11.13 [2]: 201 10.125,3 10.28,6 6 4 2 2 === − − y du b s s F Mức có nghĩa 0,001, f2 = m-1= 3-1=2; f1=N-l = 4-3=1 tra bảng chuẩn số Fisher VII-4 [7]. F(2,1,p=99,9%)=998 vậy: Fb < F(2,1,p=99,9%) mô hình thống kê tương hợp với hệ thống thực. Chuyển phương trình hồi quy với các biến mã hóa về phương trình với các biến thực, ta nhận được mô hình toán học của chiều sâu thấm nhiệt là: vPh Lth 00195,000341,0725,0 −+−= Trong đó: hth là chiều sâu thấm nhiệt (mm); PL là công suất laser (W); v là vận tốc cắt (m/ph). Sử dụng phần mềm MATLAB ta vẽ được đồ thị quan hệ giữa kích thước chiều sâu thấm nhiệt phụ thuộc vào các thông số công suất laser và vận tốc cắt (hình 5). 4. Kết luận Nghiên cứu đã sử dụng phương pháp thực nghiệm Taguchi để chọn và đánh giá các thông số ảnh hưởng đến chiều sâu thấm nhiệt khi có gia nhiệt bằng laser. Kết quả cho thấy; các thông số khoảng cách từ đầu laser đến bề mặt phôi, vị trí điểm đặt của laser trên phôi và lượng tiến dao trong điều kiện thí nghiệm này ảnh hưởng không đáng kể đến chiều sâu thấm nhiệt. Thông số công suất laser và vận tốc cắt có ảnh hưởng đáng kể đến chiều sâu lớp bề mặt. Hình 5. Mặt hồi qui và đồ thị đường mức của kích thước chiều sâu thấm nhiệt phụ thuộc thông số công suất laser và tốc độ cắt Từ các đánh giá mức độ ảnh hưởng của các thông số trên và áp dụng phương pháp quy hoạch thực nghiệm trực giao, đã xây dựng thành công mô hình toán học chiều sâu lớp bề mặt phôi. Căn cứ vào mô hình này ta thấy rằng: Tạp chí Khoa học và Công nghệ 125 (2018) 035-040 40 - Khi tăng công suất laser, mà các thông số khác không đổi, dẫn đến mật độ công suất cao làm vật liệu gần bề mặt phôi tương tác mạnh với laser, nhiệt độ bề mặt tăng, do vật liệu phôi có tính dẫn nhiệt làm cho kích thước chiều sâu thấm nhiệt tăng. - Tốc độ cắt tăng, tương ứng với thời gian tương tác giữa vật liệu phôi và laser giảm, làm nhiệt độ bề mặt phôi giảm, do đó kích thước chiều sâu thấm nhiệt giảm; khi giảm tốc độ cắt thì kích thước chiều sâu thấm nhiệt tăng. Kết quả của nghiên cứu này là cơ sở để nghiên cứu, điều chỉnh chiều sâu cắt khi tiện có gia nhiệt bằng laser. Lời cám ơn Nghiên cứu này được tài trợ bởi Quỹ phát triển khoa học và công nghệ quốc gia (NAFOSTED) trong đề tài mã số “107.02-2016.01”. Tài liệu tham khảo [1] William M. Steen and Jyotirmoy Mazumder “Laser Material Processing” Springer London Dordrecht Heidelberg New York, (2010). [2] Design of Experiments (DOE) Using the Taguchi Approach, www.nutekus.com/DOE_topicOverviews35Pg.pdf [3] GS.TSKH. Bành Tiến Long, PGS.TS. Trần Thế Lục, PGS.TS. Trần Sỹ Túy “Nguyên lý gia công vật liệu” Nhà xuất bản Khoa học và Kỹ thuật (2001). [4] GS.TS. Trần Văn Địch chủ biên và các tác giả “Công nghệ chế tạo máy” Nhà xuất bản Khoa học và Kỹ thuật (2006). [5] Tool Materials, ASM 2005 (2007). [6] GS.TS. Trần Văn Địch “Các phương pháp xác định độ chính xác gia công” Nhà xuất bản Khoa học và Kỹ thuật (2011). [7] TS. Nguyễn Doãn Ý “Giáo trình quy hoạch thực nghiệm” Nhà xuất bản Khoa học và Kỹ thuật (20012). [8] C. Sainte-Catherine, M. Jeandin, D. Kechemair, J. P. Ricaud and L. Sabatier “Study of Dynamic Absorptivity at 10.6 m (CO2) and 1.06 m (Nd:YAG) Wavelengths as a Function of Temperature” Journal de Phique IV Colloque, 1991 01 (C7), pp.C7-151-C7-157.
File đính kèm:
- nghien_cuu_thuc_nghiem_de_danh_gia_anh_huong_cua_cac_thong_s.pdf