Một nghiên cứu về đọc hình vẽ biểu diễn đối tượng hình học trong không gian của học sinh Lớp 11
Tóm tắt
Bài báo này trình bày vấn đề hình vẽ biểu diễn các đối tượng hình học trong không gian và các kết quả
của một thực nghiệm trên việc đọc hình vẽ biểu diễn của B. Parzysz (1989). Từ các kết quả này, chúng
tôi rút ra giả thuyết nghiên cứu về các diễn giải có thể mà học sinh có thể thực hiện khi đọc một hình vẽ
biểu diễn và hình thành một số phỏng đoán trên các quy tắc diễn giải khác. Sau cùng tiến hành một thực
nghiệm để hợp thức hóa giả thuyết nghiên cứu và các phỏng đoán này.
22 câu trả lời kiểu này (19,6%) trong bài toán 2. Điều này khẳng định tầm quan trọng của biến dạy học “tính chất của đối tượng” và cụ thể hơn, học sinh bị hạn chế với các mặt phẳng được trình bày trong trường hợp đối tượng được nghiên cứu là một khối đa diện thường xuyên hơn trong các trường hợp khác. 6.5.2. Bài toán nghiên cứu vị trí tương đối của đường thẳng và mặt phẳng Trường hợp đối tượng nghiên cứu không phải là hình hộp Bảng 2: Chính là ba bài toán 3, 4 và 5 có kết quả thực nghiệm được trình bày trong bảng 2 Bài toán 3 4 5 Kiểu trả lời C K KB C K KB C K KB Số lượng Phần trăm 36 17,5 8 3,9 162 78,6 80 38,8 6 2,9 120 58,3 142 68,9 0 0 64 31,1 Trong bài toán 3, mặc dù có gần 80% câu trả lời kiểu “KB”, nhưng học sinh đã sử dụng một số quy tắc ngầm ẩn của hình vẽ biểu diễn: “Thiếu dấu nét đứt đoạn”, “Cần kéo dài đoạn thẳng để xem”, “Cần làm rõ giao điểm”. Tám học sinh đã trả lời “K” mà không chứng minh câu trả lời bằng sự thiếu vắng nét đứt đoạn. Trong 36 câu trả lời “C”, có 8 chứng minh đề cập đến quy tắc diễn giải “đường thẳng – cắt – mặt phẳng” và 14 sử dụng M T NGHIÊN CỨU VỀ ĐỌC HÌNH VẼ BIỂU DIỄN ĐỐI TƯỢNG HÌNH HỌC TRONG KHÔNG GIAN 46 một phần kết quả hình học: một đường thẳng hoặc song song hoặc cắt một mặt phẳng, trong đó chứng minh đường thẳng d không song mặt phẳng (P) bằng cách sử dụng quy tắc diễn giải “đường thẳng – song song – mặt phẳng” (phỏng đoán 2) Trong bài toán 4, phần lớn các chứng minh cho câu trả lời kiểu “C” là: “Có, vì A và B nằm hai phía của mặt phẳng (P)”. Một số học sinh đã cho rằng “A nằm phía trên (P) và B nằm bên dưới (P)”. Các chứng minh này là một phần quy tắc diễn giải “ở trên / ở dưới” (phỏng đoán 1). “Có, vì đường thẳng AB không song song với (P)”. Chúng tôi nghĩ rằng các học sinh đưa ra các chứng minh này vì đường thẳng AB không song song với bất kỳ cạnh nào của hình bình hành (quy tắc diễn giải “đường thẳng – song song – mặt phẳng”). Các chứng minh “Vì A và B nằm hai phía mặt phẳng (P)”, “Vì đường thẳng AB xuyên qua (P)” và “Nếu ta mở rộng mặt phẳng (P) ra” “thì đường thẳng cắt mặt phẳng” là hệ quả của sự phân hoạch mặt phẳng “ở trên / ở dưới”. Trong bài toán 5, câu trả lời “C” chiếm đa số thuộc kiểu “Có, vì đường thẳng song song với một đường thẳng của mặt phẳng” (chiếm 40%) hay “Có, vì đường thẳng d không cắt mặt phẳng (P)” (chiếm 15%). Trường hợp đối tượng nghiên cứu là một hình hộp. Bảng 3: Chính là bốn bài toán 6, 7, 8 và 9 có kết quả được trình bày trong bảng 3 Bài toán 6 7 8 9 Kiểu trả lời C K KB C K KB C K KB C K KB Số lượng Phần trăm 2 0,9 134 65,1 70 34 46 22,3 10 4,9 150 72,8 24 11,7 32 15,5 150 72,8 20 9,7 16 7,8 170 82,5 Trong bài toán 6, đa số câu trả lời trùng với mong đợi của chúng tôi, nghĩa là trả lời “K”. Trong số đó, có 50 học sinh đã chứng minh với luận chứng liên quan đến sự hiển nhiên về mặt nhận thức: “Không, nó cho thấy rõ”. Có 64 học sinh đã chứng minh với luận chứng “Không, vì d không song song với bất kỳ đường thẳng nào của mặt phẳng” hay “Không, vì đường thẳng d không song song với đường thẳng AC”. Các câu trả lời này là hệ quả của quy tắc diễn giải “đường thẳng – song song – mặt phẳng”. Cụ thể hơn, các học sinh này đã sử dụng kết quả là nếu đường thẳng không song song với bất kỳ đường thẳng nào của mặt phẳng thì nó không song song với mặt phẳng đó. Trong ba bài toán 7, 8 và 9, mặc dù câu trả lời kiểu “KB” chiếm tỉ lệ phần trăm khá cao, nhưng chỉ có 30% của các câu trả lời này là đúng. Một loại chứng minh khác cho câu trả lời “KB” (chiếmj 30%) dựa trên thực tế là “đường thẳng d song song với mặt phẳng (ABCD) hay nằm trong mặt phẳng này”. Sự thiếu vắng của đánh dấu giao điểm hay nét đứt đoạn cho phép học sinh (khoảng 10%) kết luận về sự giao nhau của hai đườnh thẳng hay của một đường thẳng và một mặt phẳng. 6.5.3. Bài toán nghiên cứu vị trí tương đối của hai đường thẳng NGUYỄN ÁI QUỐC 47 Bảng 4: Các kết quả liên quan đến hai bài toán 10 và 11 được trình bày trong bảng 4 Bài toán 10 11 Kiểu trả lời C K KB C K KB Số lượng Phần trăm 40 19,4 136 66 30 14,6 134 65,1 18 8,7 54 26,2 Câu trả lời chiếm đa số đối với bài toán 10 là “K”và đối với bài toán 11 là “C”. Trong câu trả lời “K” của bài toán 10, có 31 học sinh chứng minh “vì chúng không được chứa trong cùng một hình bình hành” và có 37 học sinh chứng minh “vì chúng không có giao điểm chung trên hình vẽ”. Trong 18 câu trả lời “K” của bài toán 11, chỉ có 6 học sinh đã chứng minh “d và d’ không cắt nhau vì giao điểm của chúng lần lượt với giao tuyến của hai mặt phẳng (SAB) và (SCD) là hai điểm phân biệt”. Các chứng minh khác cho câu trả lời “K” là “d và d’ không nằm trong cùng một mặt phẳng” hay “các mặt phẳng không cắt nhau”. Các chứng minh cho câu trả lời “C” chủ yếu là: - “d và d’ cắt nhau vì chúng cùng nằm trong hai mặt phẳng cắt nhau” (49%). - “Bằng cách kéo dài hai đường thẳng, ta thấy chúng cắt nhau” (7%). Các chứng minh cho câu trả lời “KB” chủ yếu là: - “bài toán cho thiếu dữ kiện” (38%). - “Cần phải biết d và d’ có đồng phẳng hay không?” (10%). 6.6. Tổng hợp các kết quả thực nghiệm Phân tích cho thấy các chứng minh dựa trên duy nhất sự hiển nhiên về mặt nhận thức chiếm số lượng rất nhỏ. Hầu hết các chứng minh đều sử dụng các tính chất hình học. Ràng buộc “Chứng minh” cho phép chúng tôi làm rõ các quy tắc diễn giải. Học sinh sử dụng theo cách liên hợp các quy tắc diễn giải cùng với các định lý của hình học trong không gian để chứng minh cho các trả lời câu hỏi. Cần lưu ý rằng các định lý này không hề mâu thuẫn với các quy tắc diễn giải vì các quy tắc diễn giải chỉ là minh họa của các định lý đó. Chúng ta có thể suy ra rằng không tồn tại các mâu thuẫn giữa kiến thức hình học và việc đọc hình vẽ biểu diễn. Điều này có thể củng cố việc sử dụng các quy tắc diễn giải. Khái niệm đồng phẳng đóng một vai trò quan trọng trong các bài toán về sự tương giao của hai đường thẳng trong không gian như trong bài toán 10 và 11. Đặc biệt đối với bài toán 11, hình vẽ có thể chỉ là thông tin nếu chúng ta sử dụng các phương tiện kiểm soát khác dựa trên các quy tắc của phép chiếu song song. Thực vậy, đây chính là bài toán duy nhất trong thực nghiệm mà chúng ta có thể trả lời bằng hình vẽ biểu diễn bằng cách sử dụng quy tắc “nếu giao điểm của d với là giao tuyến của hai mặt phẳng (SAB) và (SCD) trùng với giao điểm của d’ với thì hai đường thẳng d và d’ cắt nhau”. Quy tắc này không được phát biểu tường minh trong Sách giáo khoa, nhưng nó cần thiết phải được chứng minh. 6.6.1. Phân hoạch không gian Quy tắc diễn giải “bên trong – mặt phẳng” và “bên ngoài – mặt phẳng” đã M T NGHIÊN CỨU VỀ ĐỌC HÌNH VẼ BIỂU DIỄN ĐỐI TƯỢNG HÌNH HỌC TRONG KHÔNG GIAN 48 được Parzysz kiểm chứng. Chúng ta cũng lưu ý rằng quy tắc diễn giải “bên trong – mặt phẳng” đã được học sinh huy động trong bài toán 1. Trong bài toán 4, học sinh đã sử dụng một số chứng minh cho thấy hai miền “ở trên” và “ở dưới” mặt phẳng. Điều này cho phép hợp thức hóa phỏng đoán 1 “ở trên / ở dưới”. 6.6.2. Vị trí tương đối của đường thẳng và mặt phẳng Quy tắc diễn giải “đường thẳng – trong – mặt phẳng” đã được Parzysz kiểm chứng. Quy tắc diễn giải “đường thẳng – song song – mặt phẳng” đã được thực nghiệm chúng tôi kiểm chứng. Quy tắc này cho phép chứng minh rằng một đường thẳng song song với một mặt phẳng khi nó song song với một đoạn thẳng của mặt phẳng, và cũng để chứng minh rằng một đường thẳng không song song với một mặt phẳng khi trên hình vẽ nó không song song với bất kỳ một đoạn thẳng nào của mặt phẳng. Quy tắc diễn giải “đường thẳng – ngoài – mặt phẳng” đã được kiểm chứng duy nhất trong trường hợp có khối đa diện. 6.6.3. Vị trí tương đối của hai đường thẳng Quy tắc diễn giải “đường thẳng – song song – đường thẳng” đã được Parzysz kiểm chứng. Phân tích các chứng minh của bài toán 10 làm lộ rõ việc sử dụng quy tắc diễn giải “đường thẳng – cắt – đường thẳng”. Riêng trong bài 11, việc phân tích kết quả cho thấy sự tồn tại một định lý hành động ở học sinh: Nếu hai đường thẳng lần lượt chứa trong hai mặt phẳng cắt nhau, thì chúng cắt nhau. 7. Kết luận Các quy ước biểu diễn được chấp nhận trong giảng dạy có chức năng minh họa một tình huống không gian và do đó mở rộng miền hoạt động của hình vẽ biểu diễn. Các quy ước này đã trở thành các quy tắc diễn giải ở học sinh trong việc đọc hình vẽ biểu diễn. Điều này cho phép hợp thức hóa giả thuyết nghiên cứu về các quy ước: Các quy ước biểu diễn của phép chiếu song song trở thành các quy tắc diễn giải một hình vẽ biểu diễn các đối tượng hình học trong không gian ở học sinh. Tồn tại một định lý hành động ở học sinh liên quan đến sự cắt nhau của hai mặt phẳng: Nếu hai đường thẳng lần lượt nằm trong hai mặt phẳng cắt nhau thì chúng cắt nhau. TÀI LIỆU THAM KHẢO 1. Bkouche R., Soufflet M. (1983), Axiomatique, formalism, théorie, Bulletin Inter-Irem « Enseignement de la géometrie » (23) 3 – 24. 2. Parzysz B. (1989), Représentations planes et enseignement de la géometrie de l’espace au lycee, Contribution à l’étude de la relation voir/savoir, Thèse. Paris: Université Paris-7. 3. Phan Đức Chính, Tôn Thân, Nguyễn Huy Đoan, Lê Văn Hồng, Trương Công Thành, Nguyễn Hữu Thảo (2007), Toán 8, Tập Hai, Nxb Giáo dục. 4. Trần Văn Hạo, Nguyễn Mộng Hy, Khu Quốc Anh, Nguyễn Hà Thanh, Phan Văn Viện (2007), Hình học 11, Nxb Giáo dục. 5. Trần Văn Hạo, Nguyễn Mộng Hy, Khu Quốc Anh, Nguyễn Hà Thanh, Phan Văn Viện (2007), Sách Giáo viên Hình học 11, Nxb Giáo dục. Ngày nhận bài: 07/8/2017 Biên tập xong: 15/9/2017 Duyệt đăng: 20/9/2017
File đính kèm:
- mot_nghien_cuu_ve_doc_hinh_ve_bieu_dien_doi_tuong_hinh_hoc_t.pdf