Hàm đa thức - Chương 4: Giải hệ phương trình đại số tuyến tính
Xét hệ phương trình AX=B. Khi giải hệ bằng phương pháp Gauss ta đưa nó về dạng ma trận tam giác sau một loạt biến đổi. Phương pháp khử Gauss-Jordan cải tiến khử Gauss bằng cách đưa hệ về dạng :
EX = B*
và khi đó nghiệm của hệ chính là B*. Trong phương pháp Gauss-Jordan mỗi bước tính phải tính nhiều hơn phương pháp Gauss nhưng lại không phải tính nghiệm. Để đưa ma trận A về dạng ma trận E tại bước thứ i ta phải có aii = 1 và aij = 0. Như vậy tại lần khử thứ i ta biến đổi :
1.aij = aij/aii (j = i + 1, i + 2,., n)
2.k = 1, 2,., n
akj = akj - aijaki (j = i + 1, i + 2,., n)
bk = bk - biaki
nclude
#include
#include
#define spt 10
void main()
{
float a[spt][2*spt];
float b[spt];
int i,j,k,n,m,t;
float max,c;
char tl;
clrscr();
printf("Cho so phuong trinh n = ");
scanf("%d",&n);
printf("Cho cac phan tu cua ma tran a :\n");
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
{
printf("a[%d][%d] = ",i,j);
scanf("%f",&a[i][j]);
}
printf("\n");
printf("Ma tran a ma ban da nhap");
printf("\n");
for (i=1;i<=n;i++)
{
for (j=1;j<=n;j++)
printf("%15.5f",a[i][j]);
printf("\n");
}
printf("\n");
t=1;
flushall();
while (t)
{
printf("Co sua ma tran a khong(c/k)?");
scanf("%c",&tl);
if (toupper(tl)=='C')
{
printf("Cho chi so hang can sua : ");
scanf("%d",&i);
printf("Cho chi so cot can sua : ");
scanf("%d",&j);
printf("a[%d][%d] = ",i,j);
scanf("%f",&a[i][j]);
}
if (toupper(tl)=='K')
t=0;
}
printf("Ma tran a\n");
printf("\n");
for (i=1;i<=n;i++)
{
for (j=1;j<=n;j++)
printf("%15.5f",a[i][j]);
printf("\n");
}
printf("\n");
printf("Cho cac phan tu cua ma tran b : \n");
for (i=1;i<=n;i++)
{
printf("b[%d] = ",i);
scanf("%f",&b[i]);
}
printf("\n");
printf("Ma tran b ma ban da nhap\n");
printf("\n");
for (i=1;i<=n;i++)
printf("b[%d] = %15.5f\n",i,b[i]);
printf("\n");
t=1;
flushall();
while (t)
{
printf("Co sua ma tran b khong(c/k)?");
scanf("%c",&tl);
if (toupper(tl)=='C')
{
printf("Cho chi so hang can sua : ");
scanf("%d",&i);
printf("b[%d] = ",i);
scanf("%f",&b[i]);
}
if (toupper(tl)=='K')
t=0;
}
printf("\n");
printf("Ma tran b\n");
printf("\n");
for (i=1;i<=n;i++)
printf("%15.5f\n",b[i]);
printf("\n");
t=1;
flushall();
i=1;
while (t)
{
if (a[i][i]==0)
{
max=0;
m=i;
for (k=i+1;k<=n;k++)
if (max<fabs(a[k][i]))
{
m=k;
max=fabs(a[i][i]);
}
if (m!=i)
{
for (j=i;j<=n;j++)
{
c=a[i][j];
a[i][j]=a[m][j];
a[m][j]=c;
}
c=b[i];
b[i]=b[m];
b[m]=c;
}
if (m==i)
{
t=0;
printf("MA TRAN SUY BIEN");
}
}
if (a[i][i]!=0)
{
c=1/a[i][i];
for (j=i;j<=n;j++)
a[i][j]=a[i][j]*c;
b[i]=b[i]*c;
for (k=1;k<=n;k++)
if (k!=i)
{
c=a[k][i];
for (j=i;j<=n;j++)
a[k][j]=a[k][j]-a[i][j]*c;
b[k]=b[k]-b[i]*c;
}
}
i=i+1;
if (i==(n+1))
t=0;
}
if (i==(n+1))
{
printf("NGHIEM CUA HE");
printf("\n");
for (i=1;i<=n;i++)
printf("x[%d] = %15.5f\n",i,b[i]);
}
getch();
}
§3. PHƯƠNG PHÁP CHOLESKY
Trong phương pháp Cholesky một ma trận đối xứng A được phân tích thành dạng A = RTR trong đó R là một ma trận tam giác trên.Hệ phương trình lúc đó chuyển thành AX = RTRX = B. Như vậy trước hết ta phân tích ma trận A thành tích hai ma trận. Sau đó giải hệ phương trình RTY = B và cuối cùng là hệ RX = Y. Chương trình mô tả thuật toán này được cho dưới đây:
Chương trình 4-5
#include
#include
#include
#include
#include
#define max 6
void main()
{
float a[max][max],r[max][max];
float b[max],x[max],y[max];
int i,j,k,l,n,t;
float s;
char tl;
clrscr();
printf("Cho so phuong trinh n = ");
scanf("%d",&n);
printf("Cho cac phan tu cua ma tran a : \n");
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
{
printf("a[%d][%d] = ",i,j);
scanf("%f",&a[i][j]);
}
printf("\n");
printf("Ma tran a ma ban da nhap\n");
printf("\n");
for (i=1;i<=n;i++)
{
for (j=1;j<=n;j++)
printf("%15.5f",a[i][j]);
printf("\n");
}
printf("\n");
flushall();
t=1;
while (t)
{
printf("Co sua ma tran a khong(c/k)?");
scanf("%c",&tl);
if (toupper(tl)=='C')
{
printf("Cho chi so hang can sua : ");
scanf("%d",&i);
printf("Cho chi so cot can sua : ");
scanf("%d",&j);
printf("a[",i,",",j,"] = ");
scanf("%f",&a[i][j]);
}
if (toupper(tl)=='K')
t=0;
}
printf("Ma tran a\n");
printf("\n");
for (i=1;i<=n;i++)
{
for (j=1;j<=n;j++)
printf("%15.5f",a[i][j]);
printf("\n");
}
printf("\n");
printf("Cho cac phan tu cua ma tran b : \n");
for (i=1;i<=n;i++)
{
printf("b[%d] = ",i);
scanf("%f",&b[i]);
}
printf("\n");
printf("Ma tran b ma ban da nhap\n");
printf("\n");
for (i=1;i<=n;i++)
printf("b[%d] = %15.5f\n",i,b[i]);
printf("\n");
flushall();
t=1;
while (t)
{
printf("Co sua ma tran b khong(c/k)?");
scanf("%c",&tl);
if (toupper(tl)=='C')
{
printf("Cho chi so hang can sua : ");
scanf("%d",&i);
printf("b[%d] = ",i);
scanf("%f",&b[i]);
}
if (toupper(tl)=='K')
t=0;
}
printf("\n");
printf("Ma tran b\n");
printf("\n");
for (i=1;i<=n;i++)
printf("b[%d] = %15.5f\n",i,b[i]);
printf("\n");
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
r[i][j]=0.0;
for (i=1;i<=n;i++)
{
if (a[i][i]>=0)
{
r[i][i]=sqrt(a[i][i]);
for (j=1+i;j<=n;j++)
r[i][j]=a[i][j]/r[i][i];
for (k=i+1;k<=n;k++)
for (l=k;l<=n;l++)
a[k][l]=a[k][l]-r[i][k]*r[i][l];
}
}
for (k=1;k<=n;k++)
{
s=b[k];
if (k!=1)
for (i=1;i<=k-1;i++)
s=s+r[i][k]*y[i];
y[k]=-s/r[k][k];
}
for (i=n;i>=1;i--)
{
s=-y[i];
if (i!=n)
for (k=i+1;k<=n;k++)
s=s-r[i][k]*x[k];
x[i]=s/r[i][i];
}
printf("Nghiem cua he phuong trinh la\n ");
for (i=1;i<=n;i++)
printf("x[%d] = %10.5f\n",i,x[i]);
getch();
}
§4. PHƯƠNG PHÁP CROUT
Phương pháp Crout là một dạng của phương pháp Gauss.Với phương pháp Gauss, chúng ta biến đổi ma trận A thành một ma trận tam giác thì ở phương pháp Crout chúng ta phân tích ma trận này thành tích của ma trận tam giác trên R và ma trận tam giác dưới L. Trong ma trận L, các hệ số trên đường chéo chính bằng 1. Như vậy phương trình AX = B được viết thành :
A.X = L.R.X = B
Chúng ta đặt:
RX = Y
nên : LY = B
Như vậy trước hết chúng ta phân tích ma trận thành tích của L.R. Tiếp theo ta giải phương trình LY = B và sau đó giải phương trình RX = A để tìm nghiệm X.
Chương trình 4-6
#include
#include
#include
#include
#include
#define max 6
void main()
{
float b[max],x[max],y[max];
float a[max][max],r[max][max],l[max][max];
int i,j,k,n,t;
float c,tr,tl,s;
char tloi;
clrscr();
printf("Cho so phuong trinh n = ");
scanf("%d",&n);
printf("Cho cac phan tu cua ma tran a : \n");
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
{
printf("a[%d][%d] = ",i,j);
scanf("%f",&a[i][j]);
}
printf("\n");
printf("Ma tran a ma ban da nhap");
printf("\n");
for (i=1;i<=n;i++)
{
for (j=1;j<=n;j++)
printf("%10.5f",a[i][j]);
printf("\n");
}
printf("\n");
t=1;
flushall();
while (t)
{
printf("Co sua ma tran a khong(c/k)?");
scanf("%c",&tloi);
if (toupper(tloi)=='C')
{
printf("Cho chi so hang can sua : ");
scanf("%d",&i);
printf("Cho chi so cot can sua : ");
scanf("%d",&j);
printf("a[%d][%d] = ",i,j);
scanf("%f",&a[i][j]);
flushall();
}
if (toupper(tloi)=='K')
t=0;
}
printf("Ma tran a\n");
printf("\n");
for (i=1;i<=n;i++)
{
for (j=1;j<=n;j++)
printf("%10.5f",a[i][j]);
printf("\n");
}
printf("\n");
printf("Cho cac phan tu cua ma tran b : \n");
for (i=1;i<=n;i++)
{
printf("b[%d] = ",i);
scanf("%f",&b[i]);
}
printf("\n");
printf("Ma tran b ma ban da nhap");
printf("\n");
for (i=1;i<=n;i++)
printf("b[%d] = %10.5f\n",i,b[i]);
printf("\n");
t=1;
flushall();
while (t)
{
printf("Co sua ma tran b khong(c/k)?");
scanf("%c",&tloi);
if (toupper(tloi)=='C')
{
printf("Cho chi so hang can sua : ");
scanf("%d",&i);
printf("b[%d] = ",i);
scanf("%f",&b[i]);
flushall();
}
if (toupper(tloi)=='K')
t=0;
}
printf("\n");
printf("Ma tran b\n");
printf("\n");
for (i=1;i<=n;i++)
printf("b[%d] = %10.5f\n",i,b[i]);
printf("\n");
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
r[i][j]=0.0;
l[i][j]=0.0;
}
for (i=1;i<=n;i++)
{
r[1][i]=a[1][i];
l[i][i]=1.0;
l[i][1]=a[i][1]/a[1][1];
}
for (k=2;k<=n;k++)
{
for (j=k;j<=n;j++)
{
tr=0.0;
for (i=1;i<=k;i++)
tr=tr+l[k][i]*r[i][j];
r[k][j]=a[k][j]-tr;
}
if (k!=n)
{
for (i=1;i<=n;i++)
{
tl=0.0;
for (j=1;j<=k-1;j++)
tl=tl+l[i][j]*r[j][k];
l[i][k]=(a[i][k]-tl)/r[k][k];
}
}
else
printf("\n");
}
if (l[1][1]==0.0)
if (b[1]==0.0)
printf("He da cho vo nghiem\n");
else
{
printf("He da cho co vo so nghiem\n");
y[n]=c;
}
else
y[1]=b[1]/l[1][1];
for (i=2;i<=n;i++)
{
s=0.0;
for (k=1;k<=i-1;k++)
s=s+l[i][k]*y[k];
y[i]=(b[i]-s)/l[i][i];
}
if (r[n][n]==0.0)
if (y[n]==0.0)
printf("He da cho vo nghiem\n");
else
{
printf("He da cho co vo so nghiem\n");
x[n]=c;
}
else
x[n]=y[n]/r[n][n];
for (i=n-1;i>=1;i--)
{
s=0.0;
for (k=i+1;k<=n;k++)
s+=r[i][k]*x[k];
x[i]=(y[i]-s)/r[i][i];
}
printf("\n");
printf("Nghiem cua he da cho la\n");
printf("\n");
for (i=1;i<=n;i++)
printf("x[%d] = %15.5f\n",i,x[i]);
getch();
}
§5. PHƯƠNG PHÁP LẶP ĐƠN
Xét hệ phương trình AX = F. Bằng cách nào đó ta đưa hệ phương trình về dạng
X = BX + G
trong đó:
B = (bij)n,n
G = (g1,g2,...,gn)T
Chọn vectơ:
X = ( x1(o),x2(o),....,xn(o) )T
làm xấp xỉ thứ 0 của nghiệm đúng và xây dựng xấp xỉ
X(m+1) = BX(m) + G ( m = 0,1,....)
Người ta chứng minh rằng nếu phương trình ban đầu có nghiệm duy nhất và một trong ba chuẩn của ma trận B nhỏ hơn 1 thì dãy xấp xỉ hội tụ về nghiệm duy nhất đó.(Cho một ma trận B,chuẩn của ma trận B, kí hiệu là || B || là một trong 3 số :
(Chuẩn của ma trận quan hệ tới sự hội tụ của phương pháp lặp)
Ví dụ: Chúng ta có phương trình
Chúng ta đưa phương trình về dạng :
Như vậy :
và
Dễ thấy ; và nên phép lặp hội tụ. Chương trình lặp đơn là:
Chương trình 4-7
#include
#include
#include
#include
#include
#define max 10
void main()
{
float a[max][max];
float f[max],x0[max],x1[max];
File đính kèm:
ham_da_thuc_chuong_4_giai_he_phuong_trinh_dai_so_tuyen_tinh.doc

