Digital Signal Processing - Frequency Response Digital Filter Designs
Frames of the chapter:
1. Equivalent Descriptions of Digital Filters
2. Transfer functions
3. Sinusoidal Response
4. Poles and zeros designs
5. Deconvolution, inverse Filters, and Stability
12/12/2011 1 DIGITAL SIGNAL PROCESSING FREQUENCY RESPONSE DIGITAL FILTER DESIGNS Lectured by: Assoc. Prof. Dr. Thuong Le-Tien National Distinguished Lecturer September 2011 Lectured by Assoc.Prof.Dr. Thuong Le-Tien Frames of the chapter: 1. Equivalent Descriptions of Digital Filters 2. Transfer functions 3. Sinusoidal Response 4. Poles and zeros designs 5. Deconvolution, inverse Filters, and Stability 12/12/2011 2 1. Equivalent descriptions of digital filters With the aid of z-transform, several mathematically equivalent ways to describe and characterize FIR and IIR filters: * Transfer function H(z) * Frequency response H * Block diagram realization and sample processing algorithms * I/O difference equation * Pole/Zero pattern * Impulse response h(n) * I/O convolution equation The most important one is the transfer function because from it we can easily obtain all the others 12/12/2011 3 12/12/2011 4 Equivalent description of digital filters 2. Transfer functions Example 1 1 8.01 25 z z zH 11 1 01 1 8.01 5.7 5.2 8.018.01 25 zz A A z z zH nunnh n8.05.75.2 1111 258.0258.01 zzHzzHzzHz 12518.0 nnnhnh zXzHzY 12/12/2011 5 j j e e H z z zH 8.01 4.015 8.01 4.015 1 1 2cos211 aaae j 64.0cos6.11 16.0cos8.015 H Consider the transfer function: 12/12/2011 6 z 1 x(n) y(n) v (n) = x(n 1) 1 w (n) = y(n 1) 1 2 0,8 5 - z 1- The magnitude of the transfer function may be plotted with the help of the pole/zero geometric Pole/zero pattern and magnitude response 12/12/2011 7 21 35 3 5 8,01 25 )()( 35 8,01 25 )()( 1 10 z z zHH zHH 11 1 8.01 5.7 5.2 8.01 25 zz z zH zHzHzH 21 5.21 zH 12 8.01/5.7 zzH Example: Parallel form realization of H(z) 12/12/2011 8 z 1 x n( ) y(n) w0 0,8 7,5 w n-1( ) w1 -2,5 w n( ) - Canonical form Realization of H(z) Transposed realization of H(z) 12/12/2011 9 z 1 x n( ) y(n) w0 0,8 w n-1( ) w1 w n( ) 2 5 - z 1 x(n) y(n) 2 0,8 5 w (n)1 - zX zazaza zbzbzbb zXzHzY M M L L ...1 ... 2 2 1 1 2 2 1 10 zXzbzbzbbzYzazaza LLMM ......1 221102211 LnlnnMnMnn xbxbxbyayay ...... 11011 LnlnnMnMnn xbxbxbyayay ...... 11011 MM L L zazaza zbzbzbb zD zN zH ...1 ... 2 2 1 1 2 2 1 10 * The transfer function of an IIR filter as the ratio of two polynomials of degrees, say L and M 12/12/2011 10 Example: Determine the transfer function of the third- order FIR filter with impulse response: h = [1, 6, 11, 6] * I/O equation: y(n) = x(n) + 6x(n -1) + 11x(n -2) + 6x(n -3) * Z-Transform: H(z) = 1 + 6z-1 + 11z-2 + 6z-3 * H(z) has one zero at z = -1, H(z) = (1 + z-1)(1 + 2z-1)(1 + 3z-1) * substitute z = ej into the equation LLzbzbzbbzNzH ...22 1 10 Lnlnnn xb...xbxby 110 FIR filter: 12/12/2011 11 H() = (1 + e-j)(1 + 2e-j)(1 + 3e-j) This is a low pass filter. 12/12/2011 12 12/12/2011 13 Example: )4()()( nxnxny 44 1 )( )( )()()()( z zX zY zHzXzzXzY jjjjj ejeeeeH 22224 )2sin(2)(1)( j jz kezz jk ,1,,13,2,1,0,1 4/24 Example: Determine the transfer function and causal impulse response of the filters: (a) y(n) = 0.25y(n-2) + x(n) (b) y(n) = - 0.25y(n-2) + x(n) Solve: (a) Z-transform Y(z) = 0.25Y(z)z-2 + X(z) H(z) = Y(z)/X(z) A1 = A2 = 0.5. The causal impulse response: h(n) = A1(0.5) nu(n) + A2(-0.5) nu(n) 1 2 1 1 2 5.015.0125.01 1 z A z A z zH 12/12/2011 14 Pole/zero pattern and frequency response of the filter 12/12/2011 15 (b) Y(z) = -0.25Y(z)z-2 + X(z) 1 * 1 1 1 2 5.015.0125.01 1 jz A jz A z zH nun nuenujAnh n jnnn eùA 2/cos5.0 5.05.0Re25.0Re2 2/2 12/12/2011 16 4. Pole/zero designs * First order filters Pole/zero placement can be used to design filters such as first order smoothers, notch filters and resonator The general transfer function, where a, b are positive and less than one; gain factor G is arbitrary 1 1 1 1 8.01 4.015 8.01 25 z z z z zH 1 1 1 1 az bzG zH 12/12/2011 17 Frequency response at lowest and highest frequencies: = 0, by setting z = 1 The attenuation of the highest frequency relative to the lowest one is: 8.001.0 20/1/1 effna a bG H a bG H 1 1 , 1 1 0 ba ab H H 11 11 0 4.0 21 1 18.01 8.011 b b b 1 1 8.01 4.01 z zG zH 12/12/2011 18 i i pmax eff n )/1ln( )/1ln( ln ln effn Effective time constant Define: Where is the desired level of smallest * Resonators and equalizers Example for a resonator 12/12/2011 19 0Re jp 0Re* jp Pole conjugate pair 221111 1Re1Re1 00 zaza G zz G zH jj 2 201 ,cos2 RaRa jjjjjj eaea G ee G H 2 211Re1Re1 00 1 Re1Re1 00 0 jjjj ee G H 2020 2 2 cos21cos21 RRRR G H 12/12/2011 20 Normalizing |H(0)|= 1 Calculating for the width 3-dB dB H H o 3 2 1 log10 )( )( log20 1010 1 |)Re1()Re1(| )( 00 0 jjjj ee G H 2 1 |)(| 2 1 |)(| 20 2 HH 2 0 )2(cos21)1( RRRG 12/12/2011 21 Solving of this equation: = 2 – 1 When p closed to the unit circle: 2(1 – R) |PQ| = 1 – R. |||| )( ; |||| )( * * pzpz G zH pzpz G zH QQ Q AA A || || |)(| |)(| PA PQ pz pz zH zH A Q Q A 2 1 )( )( Q A zH zH 2 1 || || PA PQ |PA|= |PQ| |AB| = 2|QA| = 2|PQ| = 2(1 – R) = |AB| = 2(1 – R) For 3-dB condition or )(sin sin )( 00 0 nR G nh n For a given , R can be calculated 12/12/2011 22 Example: Design a resonator with 2 poles, f0 = 500Hz , bandwidth = 32Hz, fS = 10kHz. e)(rad/sampl 1.0 2 0 S o f f 02,0 2 Sf f 2(1 – R) = 0.02 R = 0,99 then G = 0.0062; a1 = -1.8831; a2 = 0.9801 11 9801.08831.11 0062.0 )( zz zH 12/12/2011 23 00 * 11 , jj rea rea 0 r 1 2 2 1 1 2 2 1 1 11 11 1 1 )Re1()Re1( )1()1( )( 00 00 zaza zbzb zz zrezre zH jj jj 2 201 2 201 ,cos2 ,cos2 rb rb Ra Ra ))(cos21())(cos21( ))(cos21())(cos21( |)(| 2 0 2 0 2 0 2 02 RRRR rrrr H
File đính kèm:
- digital_signal_processing_frequency_response_digital_filter.pdf