Bài giảng Toán tài chính - Chương 6: Phương trình vi phân & ứng dụng
KHÁI NIỆM CHUNG
Trong thực tế khi nghiên cứu sự phụ thuộc lẫn nhau giữa
các đối tượng, nhiều khi chúng ta không thể thiết lập trực
tiếp mối quan hệ phụ thuộc dạng hàm số giữa các đối
tượng đó, mà chỉ có thể thiết lập mối liên hệ giữa các đối
tượng mà ta cần tìm mối quan hệ hàm số, cùng với đạo
hàm hoặc tích phân của hàm số chưa biết ấy.
Trong nhiều mô hình, hệ thức liên hệ được viết dưới
dạng phương trình có chứa đạo hàm, đó là phương trình
vi phân.
0.03 kg/l * 25l/phút=0,75 kg/phút Tốc độ muối ra: 25l/phút * y(t)/5000 kg/lít = y(t)/200 kg/phút Chênh lệch vào ra: 0,75 – y(t)/200 Đây cũng chính là tốc độ thay đổi của khối lượng muối y(t) Ta có: y’(t)=0,75-y(t)/200 Hay y’=0,75-0,005y 7 MÔ HÌNH TĂNG DÂN SỐ 1 Giả định: + Tốc độ tăng dân số tăng tỷ lệ thuận với quy mô dân số. Mô hình toán học của giả định trên? 8 MÔ HÌNH TĂNG DÂN SỐ 2 Giả định: + Tốc độ tăng dân số tăng tỷ lệ thuận với quy mô dân số. + Khi tăng đến mức K nào đó thì dân số giảm (hoặc giảm về K khi dân số tăng quá K) Hãy đưa ra mô hình toán học? 9 PHƯƠNG TRÌNH VI PHÂN CẤP 1 Định nghĩa. Phương trình vi phân cấp 1 là phương trình có dạng: Trong đó: - F xác định trong miền G thuộc R3 - x là biến độc lập, y là hàm cần tìm ( ), , ' 0 , , 0 dy F x y y hay F x y dx æ ö÷ç ÷= =ç ÷ç ÷çè ø 10 NGHIỆM CỦA PTVP CẤP 1 Nghiệm tổng quát Nghiệm tổng quát dưới dạng ẩn (tích phân tổng quát) Nghiệm riêng Nghiệm kỳ dị 11 NGHIỆM TỔNG QUÁT Dạng: Thỏa mãn PTVP với mọi giá trị của C Với mọi điểm ( 0, 0) ∈ ta đều tìm được C0 sao cho ( ),y x Cj= ( )0 0 0,y x Cj= 12 NGHIỆM TỔNG QUÁT DẠNG ẨN Tên khác: tích phân tổng quát Hệ thức Φ , , = 0 hay Φ , ) = gọi là nghiệm tổng quát của phương trình vi phân trong miền D nếu nó xác định nghiệm tổng quát của phương trình trong D. 13 NGHIỆM RIÊNG Nghiệm nhận được từ nghiệm tổng quát với hằng số C0 xác định được gọi là nghiệm riêng. Nghiệm riêng: Tích phân riêng: 14 NGHIỆM KỲ DỊ Nghiệm kỳ dị là nghiệm không thể nhận được từ nghiệm tổng quát với bất kỳ giá trị nào của C. 15 PTVP CẤP 1 THƯỜNG GẶP PT biến số phân ly PT biến số phân ly được PT đẳng cấp cấp 1 PT tuyến tính cấp 1 PT Bernoulli PT vi phân toàn phần 16 PT BIẾN SỐ PHÂN LY Dạng: g(y)dy=f(x)dx Lấy tích phân bất định hai vế theo biến x. Ta có: Ví dụ. ( ) ( ) ( ) ( )g y dy f x dx G y F x C= Û = +ò ò 2 2 1 x ydy dx x = + 17 PT BIẾN SỐ PHÂN LY ĐƯỢC Dạng 1. Cách giải: Chia hai vế cho f1(x)g2(y) để đưa về dạng biến số phân ly Xét riêng tại những giá trị f1(x)g2(y)=0 ( ) ( ) ( ) ( )1 1 2 2f x g y dy g y f x dx= 18 VÍ DỤ Giải phương trình: Đáp án: Nghiệm tổng quát: Nghiệm: y=-1 Nghiệm: x=1 ( ) ( )( )2 31 1 1 0x y dx x y dy+ + - - = 31 ln 1 2ln 1 3 x y y C 19 PT BIẾN SỐ PHÂN LY ĐƯỢC Dạng 2. Cách giải: Đặt z=ax+by Đưa về phương trình biến số phân ly dx, dz ( )y f ax by¢= + 20 VÍ DỤ Giải phương trình sau: Đáp số: 3y x y¢= - 1 3 3 xCe x y = - - 21 PHƯƠNG TRÌNH ĐẲNG CẤP CẤP 1 Dạng: Cách giải: Đặt t=y/x Đưa về dạng biến số phân ly y y f x 22 VÍ DỤ Giải phương trình sau: Đáp án: 2 2 2 x y y xy + ¢= 2 2 2 1 12 1 y x C y x C x x æ ö÷ç ÷- = Û - =ç ÷ç ÷çè ø 23 PHƯƠNG TRÌNH TUYẾN TÍNH CẤP 1 Dạng phương trình: trong đó p(x), q(x) là các hàm liên tục trong khoảng (a,b) nào đó. Nếu q(x)=0 ta có phương trình thuần nhất. Nếu q(x) ≠ 0 ta có phương trình không thuần nhất. ( ) ( )y p x y q x¢+ = 24 PHƯƠNG PHÁP GIẢI B1. Giải phương trình thuần nhất B2. Giải phương trình không thuần nhất bằng phương pháp biến thiên hằng số B3. Công thức nghiệm tổng quát: ( ) 0y p x y¢+ = ( ) ( ) ( )( )0y p x y q x q x¢+ = ¹ ( ) ( ) ( )p x dx p x dx y e q x e dx C - æ öò ò ÷ç= + ÷ç ÷çè øò 25 VÍ DỤ Cho phương trình vi phân: A) Giải phương trình B) Tìm nghiệm riêng thỏa mãn y(1)=-1 Đáp số: Nghiệm tổng quát: Nghiệm riêng: 1 2y y x x ¢- = 22y x Cx= + 22 3y x x= - 26 VÍ DỤ Giải phương trình sau: Đáp số: 2 2 xy xy xe -¢+ = ( ) 22 xy x C e-= + 27 PHƯƠNG TRÌNH BERNOULLI Dạng phương trình: Cách giải: Chia hai vế phương trình cho Đặt ta có: ( ) ( )y p x y q x y a¢+ = 1z y a-= ( )1 1 z z y y hay y ya aa a - - ¢¢ ¢ ¢= - = - 28 PHƯƠNG TRÌNH BERNOULLI Chú ý: Nếu > 0 thì y=0 cũng là nghiệm. Nếu > 1 thì y=0 là nghiệm riêng. Nếu 0 < < 1 thì y=0 là nghiệm kỳ dị 29 VÍ DỤ Giải phương trình sau: Đáp số: Nghiệm tổng quát: Nghiệm kì dị: y=0 2y xy y¢- = x y x C = + 30 PHƯƠNG TRÌNH VI PHÂN TOÀN PHẦN Dạng: Điều kiện: Nghiệm tổng quát: , , 0M x y dx N x y dy M N y x 0 0 0 0 0 0 , , , , , , y yx x y yx x y u x y M x y dx N x y dy C u x y M x y dx N x dy C 31 VÍ DỤ 1 Giải phương trình vi phân: Ta có: 2 2 2 33 6 6 4 0x xy dx x y y dy 2 2 2 3, 3 6 , 6 4 12 M x y x xy N x y x y y M N xy y x 32 VÍ DỤ 1 Nghiệm tổng quát của phương trình: 2 2 3 0 0 , 3 6 0 4 yx x y x xy dx y dy C 3 2 2 43x x y y C 33 VÍ DỤ 2 Giải phương trình vi phân: 2 2 ) 1 3 0 ) .cos sin cos 0 a x y dx x y dy b xy xy xy dx x xy dy 34 THỪA SỐ TÍCH PHÂN Xét phương trình vi phân dạng: Nếu phương trình trên chưa có dạng phương trình vi phân toàn phần thì ta có thể tìm hàm ( , ) sao cho phương trình: Là phương trình vi phân toàn phần. Hàm ( , ) gọi là thừa số tích phân. , , 0M x y dx N x y dy , . , , . , 0x y M x y dx x y N x y dy 35 VÍ DỤ Giải phương trình sau: Bằng cách sử dụng thừa số tích phân dạng ( ) Chú ý: Thừa số tích phân khá khó tìm Ta tìm dạng đặc biệt như ( ) hay ( ) Sinh viên không cần trình bày cách tìm thừa số TP 2 3 22 3 7 3 0xy y dx xy dy 36 VÍ DỤ Giải các ptvp sau 2 2 2 2 ) tan ln 0 ) 2 1; 0 1 ) 0 ) ln ; 1 1 1 ) 2 1 2 ) 3 a ydx x xdy b y x y y y c x y y xy x d xy y y x x y e y xy x f y x y 37 BÀI TẬP 1 38 BÀI TẬP 2 39 BÀI TẬP 3 40 BÀI TẬP 4 41 BÀI TẬP 5 42 BÀI TẬP 6 Giải các phương trình vi phân sau bằng phương pháp thừa số tích phân 43 BUỔI 2 6.3 Ứng dụng của phương trình vi phân bậc 1 44 ỨNG DỤNG PTVP CẤP 1 Phân tích định tính bằng phương pháp đồ thị Tìm hàm số khi biết hệ số co giãn Mô hình điều chỉnh giá thị trường Mô hình tăng trưởng Domar (tự tham khảo) Mô hình tăng trưởng Solow (tự tham khảo) 45 PHÂN TÍCH ĐỊNH TÍNH BẰNG PHƯƠNG PHÁP ĐỒ THỊ Xét phương trình vi phân cấp 1 dạng: Đồ thị pha (đồ hình pha) Trên mặt phẳng tọa độ với trục hoành biểu diễn y và trục tung biểu diễn y’ ta lập đồ thị hàm số f(y). Đồ thị đó được gọi là đường pha dy f y dt 46 ĐỒ THỊ PHA Tại các điểm trên trục hoành thì y’ dương nên y tăng theo thời gian, y đi từ trái sang phải Tại các điểm dưới trục hoành thì y’ âm nên y giảm theo thời gian, y đi từ phải sang trái Tại giao điểm với trục hoành, giả sử là tại , ta có y’=0. Ta gọi là trạng thái cân bằng. 47 ĐỒ THỊ PHA – DẠNG 1 Trạng thái cân bằng ổn định động y y 0 y • Tại các điểm trên trục hoành y đi từ trái sang phải • Tại các điểm dưới trục hoành y đi từ phải sang trái • Tại giao điểm với trục hoành là trạng thái cân bằng. 48 ĐỒ THỊ PHA – DẠNG 2 Trạng thái cân bằng không ổn định động y y 0 y • Tại các điểm trên trục hoành y đi từ trái sang phải • Tại các điểm dưới trục hoành y đi từ phải sang trái • Tại giao điểm với trục hoành là trạng thái cân bằng. 49 TRẠNG THÁI CÂN BẰNG ỔN ĐỊNH y 0y 0y 50 TRẠNG THÁI CÂN BẰNG KHÔNG ỔN ĐỊNH y 0y 0y 51 NHẬN XÉT Tính ổn định của trạng thái cân bằng phụ thuộc dấu của đạo hàm tại điểm cân bằng Trạng thái cân bằng ổn định động khi: 0f y 52 VÍ DỤ Xét mô hình ptvt tuyến tính cấp 1: Ta có: Trạng thái cân bằng ổn định động khi và chỉ khi: 0p 53 TÌM Y(X) BIẾT HỆ SỐ CO GIÃN Ta có: Giả sử: Ta có pt vi phân sau: ' .xy y dy x x y dx y xy x 'x y xy dy x x dx y y x 54 VÍ DỤ 1 Biết hệ số co giãn của hàm cầu theo giá: Tìm hàm cầu QD biết 10 = 500 Đáp số: 25 2 D P Q P P Q 2650 5Q P P 55 VÍ DỤ 2 Biết hệ số co giãn của hàm cầu: Tìm hàm cầu QD biết 0 = 2000 2 2000 2D P Q P P 56 BIẾN ĐỘNG CỦA GIÁ TRÊN THỊ TRƯỜNG Giả sử hàm cầu, hàm cung của một loại hàng hóa cho bởi: Điểm cân bằng thị trường: Nếu giá ban đầu là thì thị trường cân bằng. Còn nếu không thì thị trường sẽ đạt giá cân bằng sau một quá trình điều chỉnh nào đó. ;D sQ p Q p p 0p p 57 BIẾN ĐỘNG CỦA GIÁ TRÊN THỊ TRƯỜNG Trong quá trình điều chỉnh, các Qs, Qd và p đều thay đổi theo t (biến thời gian). Giả sử theo thời gian t, giá p(t) tại thời điểm t luôn tỷ lệ với độ chênh lệch giữa cầu và cung tại thời điểm đó. Nghĩa là: Với k>0 là hằng số. ' d sp t k Q t Q t 58 BIẾN ĐỘNG CỦA GIÁ TRÊN THỊ TRƯỜNG Từ đó ta có: Do đó: 'p t k p p k p k p p 0 0 .. ln . ln . k t k t dp k dt p p k t C p p p p C p pe Ce 59 BIẾN ĐỘNG CỦA GIÁ TRÊN THỊ TRƯỜNG Với t=0, ta có giá tại thời điểm ban đầu: Vậy: Dễ thấy: 0 0p p C C p p 00 k tp t p p p e 0 0lim lim 0 0k t t t p t p p p e p dok 60 NHẬN XÉT BIẾN ĐỘNG CỦA P(T) THEO T Nếu giá ban đầu p(0) cao hơn giá cân bằng ̅ thì P(t) là hàm giảm theo t và Nếu giá ban đầu p(0) thấp hơn giá cân bằng ̅ thì P(t) là hàm tăng theo t và Như vậy trong mọi trường hợp cùng với thời gian giá cả sẽ dần dần trở về với giá tại điểm cân bằng. Do đó điểm cân bằng thị trường có tính chất ổn định động lim t p t p lim t p t p 61 BIẾN ĐỘNG CỦA GIÁ TRÊN THỊ TRƯỜNG Ví dụ: Cho: Tìm thời gian t sao cho: 1 2 ; 2 3 ; 0,2; 0 0,4d sQ p Q p k p 1%p p 62 GIẢI Ta có: Vậy: Vậy sau 3 đơn vị thời gian thì giá thỏa mãn yêu cầu trên 0 0, 2. 2 3 1; 0,6k k p 0 0 1 . 0 . 5 k t k t tp p C e p p e e 1 0,01 0,05 ln 0,05 5 ln 20 3 t tp p e e t t 63
File đính kèm:
- bai_giang_toan_tai_chinh_chuong_6_phuong_trinh_vi_phan_ung_d.pdf