Bài giảng Fundamentals of Control Systems - Chapter 9: Design of discrete control system - Huỳnh Thái Hoàng
Content
Introduction
Discrete lead – lag compensator and PID controller
Design discrete systems in the Z domain
Controllability and observability of discrete systems
Design state feedback controller using pole
placement
Design state estimato
g/ 42 316.0d 0)368.0316.0066.0( 21 kk Discrete pole placement design – Example 1 (cont’) The desired poles: j* rez 2,1 493.010707.01.0 eer nTwhere: 707.0707.01101.01 22 nT 7070* j .493.02,1 ez 32003750*21 jz .., The desired characteristic equation: 0)320.0375.0)(320.0375.0( jzjz 024307502 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 43 .. zz Discrete pole placement design – Example 1 (cont’) Balancing the coefficients of the system characteristic equation and the desired characteristic equation, we have: 750)368131600920( kk 243.0)368.0316.0066.0( .... 21 21 kk 047.1 12.3 2 1 k k Conclusion: 047.112.3K 0)368.0316.0066.0()368.1316.0092.0( 2121 2 kkzkkz 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 44 0243.075.02 zz Discrete pole placement design – Example 2 Given the control system: r(k) y(k)+ ZOHT=0 u(k) uR(t) 10x1x2 1 1 s s 1 . 1 ++ k2 k1 1. Write the state equations of the discrete open loop system 2. Determine the state feedback gain K = [k1 k2] so that the closed loop system has a pair of complex poles with =0 5. , n=8 rad/sec. 3 Calculate the response of the system to step input with the 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 45 . value of K obtained above. Calculate the POT and settling time. Discrete pole placement design – Example 2 (cont’) Solution: 1. Write the state equations of the discrete open loop system Step 1: State space equations of open loop continuous system: sXsX )()( 21 )()( 21 sXssX )()( 21 txtx s 1 )()(2 s sUsX R )()()1( 2 sUsXs R )()()( 22 tutxtx R )( 1 0 )( )( 10 10 )( )( 11 tu txtx R 22 txtx )(010)(10)( 1 txtt y(t)uR(t) 10x1x21 1 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 46 )(2 1 tx xy 1s s Discrete pole placement design – Example 2 (cont’) Step 2: Transient matrix: 1)( -ss AI 1 10 1 s s1 10 10 10 01 s )1( 11 )( sss 1 10 s s )]([)( 1 st L sss 1 )1( 11 1L 1 )1( 11 11 sss LL as0 1 0 1 s L tet )1(1)( 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 47 te0 Discrete pole placement design – Example 2 (cont’) Step 3: State space equation of the open loop system: )()( )()()1( kkc kukk d dd xC BxAx )(Td A 1.0 1.0 0 )1(1 e 90500 095.01 dA T d d)( BB e . 1.0 0)1(1 de 1.0 )1( de 0 1.0 e 0 10 e 0 e 110 1.0e 005.0 0 e 0 )1(1)( e et t t 1 . 1.0e 095.0dB 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 48 010 CCd 1.0T Discrete pole placement design – Example 2 (cont’) 2 Calculate the state feedback gain K:. The closed loop characteristic equation: 0]det[ KBAI ddz 00500950101 0 095.0 . 905.00 . 10 det 21 kkz 0 095.0905.0095.0 005.0095.0005.01 det 21 21 kzk kkz 0)005.0095.0(905.0)095.0905.0)(005.01( 2121 kkkzkz 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 49 0)905.0095.00045.0()905.1095.0005.0( 2121 2 kkzkkz Discrete pole placement design – Example 2 (cont’) Th d i d d i t l j*e es re om nan po es: rez 2,1 67.085.01.0 eer nT 693.05.0181.01 22 nT 693.0* 67.02,1 jez 42805160* j The desired characteristic equation: ..2,1z 0)428.0516.0)(428.0516.0( jzjz 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 50 0448.003.12 zz Discrete pole placement design – Example 2 (cont’) Balancing the coefficients of the closed loop characteristic equation and the desired characteristic equation, we have: 031)905109500050( kk 448.0)905.0095.00045.0( .... 21 21 kk 895.6 0.44 2 1 k k 895.60.44KConclusion: 0)905.0095.00045.0()905.1095.0005.0( 2121 2 kkzkkz 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 51 0448.003.12 zz Discrete pole placement design – Example 2 (cont’) 3 Calculate system response and performances:. State space equation of the closed-loop system: )()( )()()1( kkc krkk d ddd xC BxKBAx Student continuous to calculate the response and performance by themselves following the method presented in the chapter 8. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 52 D i f di t t t ti tes gn o scre e s a e es ma ors 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 53 The concept of state estimation To be able to implement state feedback control system, it is required to measure all the states of the system. However, in some application, we can only measure the output, but cannot measure the states of the system. The problem is to estimate the states of the system from the output measurement . State estimator (or state observer) 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 54 Observability )()()1( kukk BxAx )()( kky d dd xC Consider the system: The system is complete state observable if given the control law u(k) and the output signal y(k) in a finite time interval k0 k kf , it is possible to determine the initial states x(k0). Qualitatively, the system is state observable if all t t i bl (k) i fl th t t (k)s a e var a e x n uences e ou pu y . 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 55 Observability condition )()()1( kukk dd BxAx )()( kky d xC System It is require to estimate the state from mathematical)(ˆ kx C model of the system and the input-output data. Observability matrix: 2 d d AC AC O 1 dd nddAC The necessary and sufficient condition for the observability: 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 56 nrank )(O Observability – Example )()()1( kukk BxAx )()( kky d dd xC Given the system 14809670 2310 where: 522.0297.0 .. dA 264.0 . dB 31dC Solution: Observability matrix: Analyze the observability of the system. d AC C O 7141 3 0770 1 O dd .. Because 484.1)det( O 2)( Orank 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 57 The system is observable State estimator u(k) y(k)x(k) )()()1( kukk dd BxAx Cd L )(ˆ kx + + )1(ˆ kx Cd )(ˆ ky Bd 1z++ ))(ˆ)(()()(ˆ)1(ˆ kkkkk LBA Ad )(ˆ)(ˆ kky yyu d dd xC xx State estimator: 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 58 T nlll ][ 21 Lwhere: Design of state estimators Requirements: The state estimator must be stable, estimation error should approach to zero. Dynamic response of the state estimator should be fast enough in comparison with that of the control loop. All the roots of the equation l t i id th it i l i th l It is required to chose L satisfying: 0)det( ddzI LCA oca es ns e e un c rc e n e z-p ane. The roots of are further from the unit circle than the roots of 0)det( KBA ddzI 0)det( ddzI LCA Depending on the design of L, we have different state estimator: Luenberger state observer 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 59 Kalman filter Procedure for designing the Luenberger state observer St 1 W it th h t i ti f th t t b ep : r e e c arac er s c equ. o e s a e o server 0]det[ ddz LCAI (1) Step 1: Write the desired characteristic equation: n 0)( 1 i ipz )1( nip are the desired poles of the state estimator (2) St 3 B l th ffi i t f th h t i ti , ,i ep : a ance e coe c en s o e c arac er s c equations (1) and (2), we can find the gain L. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 60 Design of state estimators – Example Problem: Given a system described by the state equation: )()()1( kkk BA )()( kky u d dd xC xx 52202970 148.0967.0 dA 2640 231.0 dB 31dC Assuming that the states of the system cannot be directly .. . measured. Design the Luenberger state estimator so that the poles of the state estimator lying at 0 13 and 0 36 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 61 . . . Design of state estimators – Example (cont’) Solution The characteristic equation of the Luenberger state estimator: 0]det[ z LCAI dd 031 52202970 148.0967.0 10 01 det 1 l l z .. 2 03148.0967.0det 11 llz (1)0)549075324131()48913(2 llzllz 3522.0297.0 22 lzl The desired characteristic equation: .... 2121 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 62 0)36.0)(13.0( zz (2)00468.049.02 zz Design of state estimators – Example (cont’) Balancing the coefficients of the equations (1) and (2): 49.0489.13 21 ll 0468.0549.0753.2413.1 21 ll Solve the above set of equations we have: , 653.21l 544.12l T544.1653.2L Conclusion 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 63 Simulation of discrete state estimator 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 64 State estimation simulation result 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 65
File đính kèm:
- bai_giang_fundamentals_of_control_systems_chapter_9_design_o.pdf