Bài giảng Fundamentals of Control Systems - Chapter 7: Mathematical model of continuous systems - Huỳnh Thái Hoàng
Content
Introduction to discrete time system
 The Z-transform
 Transfer function of discrete-time system
 State-space equation of discrete-time system
Tóm tắt nội dung Bài giảng Fundamentals of Control Systems - Chapter 7: Mathematical model of continuous systems - Huỳnh Thái Hoàng, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
kekeku )(2)(10)( 1 zEzzEzU   1210)()(  zzUzGC 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 27 )(zE Calculate TF from block diagram – Example 3 (cont’)  sG )( 20 s   s zzG )1()( 1 Z   2.05e s 2 .5)( s esG   2 )1()20( zz )1(10 z    31)1( sz Z 3 11 )1(2 .)1(5   z zz 2)1( .)(  zzzG  sHsG )()(   s zzGH )1()( 1 Z 1.0)( sH  sG )()1(10 1 z zzT s 3 2 3 )1(2 )1(1     Z  s z. Z )1(01.0)(  zzGH 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 28 sTs eez 2.02)1( zz Calculate TF from block diagram – Example 3 (cont’) Th l d l t f f ti e c ose - oop rans er unc on:      2 )1(1.0.210 zz )()(1 )()()( zGHzG zGzGzG C C k         2 )1(01.0.2101 )1( zz zzz   )1(zzz 2.08.02  zz 1 )1(1.0)( 210)(    zG zzGC  02.008.01.12 )( 234  zzzzzGk 2 )1(01.0)( )1(   zzGH zz z 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 29 2)1( zz State-space model of discrete system 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 30 The discrete state space (SS) equation  The state-space model of a discrete system is a set of first- order difference equations of the form:   )()()1( krkk BxAx   )()( kky d dd xC h  n aaa  11211 b1 w ere:  )(1 kx  n d aaa   22221A     d b 2B     )()( 2 kxk x  nnnn aaa 21  nb  C  )(kxn 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 31 nd ccc 21 Derive SS equation from difference equation  Case 1: The right hand side of the difference equation- does not involve the differences of the input: )()()1()1()( kubkyakyankyankya  ... 0110 nn    Define the state variables: The first state variable is the t t f th t )()(1  kykx ou pu o e sys em; The ith state variable (i=2..n) is set to be one sample time- )1()( )1()( 23 12   kxkx kxkx advanced of the (i1)th state variable. )1()( 1   kxkx nn  6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 32 Derive SS equation from difference equation Case 1 (cont’)   )()()1( kukk dd BxAx  The state equations:   )()( kky d xC where:  0010  0     0100        0     )( )( 2 1 kx kx     121 1000 aaaa d  A     0 0 b dB     )( )( kx k x    0000 aaaa nnn   0a   n 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 33 0001 dC Derive SS equation from difference equation – Case 1 example  Write the state equations of the system described by:   )()( kykx )(3)(4)1(5)2()3(2 kukykykyky      )1()( )1()( 12 1 kxkx kxkx Define the state variables: 23  The state equations:   )()()1( krkk dd BxAx  )()( kky d xC  010010      0 0 0 0 dB where:          50522 100 100 123 aaa dA  5.1 0 0 a b 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 34 .. 000 aaa  001dC Derive SS equation from difference equation  Case 2: The right-hand side of the difference equation involve the differences of the input:  )()1()1()( 110 kyakyankyankya  Define the state variable: ... nn )()1(...)2()1( 1210 kubkubnkubnkub nn   The first state variable is the output of the system; )()(1 kykx  The ith state variable (i=2..n) is set to be one sample time ad anced of the (i 1)th )()1()( )()1()( 223 112 kukxkx kukxkx     - v  state variable minus a quantity proportional to the )()1()( 11 kukxkx nnn     6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 35 input Derive SS equation from difference equation Case 2 (cont’)    )()( )()()1( kk kukk dd C BxAx  The state equation: y d x where:  0010     0100          2 1     )( )( 2 1 kx kx     121 1000 aaaa nnn d  A     n d  1 B     )( )( kx k n x    0000 aaaa   n   6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 36 0001 dC Derive SS equation from difference equation Case 2 (cont’) The coefficient i in the vector Bd are defined as: 0 0 1 a b  0 111 2 a ab   0 12212 3 a aab   1122111 aaab nnnn      6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 37 0a n Derive SS equation from difference equation – Case 2 example  Write the state equations of the system described by:   )()( kykx )(3)2()(4)1(5)2()3(2 kukukykykyky      )()1()( )()1()( 112 1 krkxkx krkxkx   Define the state variables:  223  The state equations:  )()()1( kukk dd BxAx   )()( kky d xC  010010   1  B where:       50522 100 100 123 aaa dA       3 2  d 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 38  .. 000 aaa  001dC Derive SS from difference equation – Case 2 example (cont’)  Th ffi i t  i th t B l l t de coe c en i n e vec or d are ca cu a e as:   5010b   25.05.010 . 2 111 2 0 1 ab a      375.0 2 5.05)25.0(13 2 12212 3 0 aab a  0a  50       3750 25.0 . dB 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 39 . Formulation of SS from block diagram y(t)r(t) e (t)e(kT)e(t) + G(s)ZOHT R  Step 1: Write the state space equations of the open-loop ti tcon nuous sys em: y(t) G(s) eR(t)    )()( )()()( tt tett R Cx BAxx y  Step 2: Calculate the transient matrix: )]([)( 1 st  L   1 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 40 )( -ss AI where Formulation of SS equations from block diagram (cont’)  Step 3: Discretizing the open-loop continuous SS equation: G(s)ZOH e(kT) y(kT)   )()(])1[( kTekTTk Rdd BxAx     A T d T )( with  )()( kTkTy d xC     CC B d d Bd 0 )(   Step 4: Write the closed-loop discrete state equations (which has input signal r(kT))    )()(])1[( kTrkTTk dddd BxCBAx 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 41   )()( kTkTy d xC Formulation of SS equations from block diagram – Example F l t th SS ti d ibi th t ormu a e e equa ons escr ng e sys em: y(t)r(t) e (t)e(kT)e(t) x x + ZOHT R s 1 as  1 K2 1 where a = 2, T = 0.5, K = 10 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 42 Formulation of state equations from block diagram – Example (cont’)  Solution: y(t)eR(t) s 1 2 1 s 10 x2 x1 Step 1: s sXsX )()( 21  )()( 21 sXssX  )()( 21 txtx  2 )()(2  s sEsX R )()()2( 2 sEsXs R )()(2)( 22 tetxtx R  )( 1 0 )( )( 20 10 )( )( 2 1 2 1 te tx tx tx tx R             BA    )(010)(10)( 11 txtxty 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 43  )(2 txC Formulation of state equations from block diagram – Example (cont’)  Step 2: Calculate the transient matrix   11 1 20 1 20 10 10 01 )(                    s s sss -AI         1 )2( 11 0 12 )2( 1 ssss    2 0 s sss    1111 11 LL                          10 )2( 2 10 )2()]([)( 1 11 ssssssst L LL  2ss       tet 2 )1( 2 11)( 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 44   te 20 Formulation of state equations from block diagram – Example (cont’)  Step 3: Discretizing the open   )()(])1[( kTekTTk BxAx- loop continuous state equations:   )()( kTkTy d Rdd xC  11               368.00 316.01 0 )1( 2 1 0 )1( 2 1)( 5.02 5.02 2 2 e e e eT Tt t t dA                               TTT d d e ed e ed 0 2 2 0 2 2 0 )1( 2 1 1 0 0 )1( 2 11)(      BB                   092.02 1 22 5.0 22 22 5.02 2 2 ee T            316.0 2 1 22 5.02 0 2 ee  6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 45  010 CCd Formulation of state equations from block diagram – Example (cont’)  Step 4: The closed-loop discrete state equations:      )()( )()(])1[( kTkT kTrkTTk dddd C BxCBAx y d x      316.0080.0010092.0316.01CBAwhere  Conclusion: The closed-loop state equation is:  368.0160.3316.0368.00ddd )( 092.0)(316.0080.0)1( 11 kr kxkx   316.0)(368.0160.3)1( 22 kxkx      )(010)( 1 kxky 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 46  )( . 2 kx Calculate transfer function from state equation  Given the state equation   )()()1( kukk dd BxAx  )()( kky d xC Th di t f f ti i e correspon ng rans er unc on s: zzYzG BAIC 1)()()(  dddzU )( 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 47 Calculate transfer function from state equation - Example  Calculate the TF of the system described by the SS equation:     )()( )()()1( kky kukk d dd xC BxAx    1070 10 dA    2 0 dB  01dC  Solution: The transfer function is:  .. ddd zzG BAIC 1)()(       01001 01 1 z     21.07.010 2)(G 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 48 7.01.02  zzz
File đính kèm:
 bai_giang_fundamentals_of_control_systems_chapter_7_mathemat.pdf bai_giang_fundamentals_of_control_systems_chapter_7_mathemat.pdf



