Bài giảng Fundamentals of Control Systems - Chapter 7: Mathematical model of continuous systems - Huỳnh Thái Hoàng
Content
Introduction to discrete time system
The Z-transform
Transfer function of discrete-time system
State-space equation of discrete-time system
Tóm tắt nội dung Bài giảng Fundamentals of Control Systems - Chapter 7: Mathematical model of continuous systems - Huỳnh Thái Hoàng, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
kekeku )(2)(10)( 1 zEzzEzU 1210)()( zzUzGC 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 27 )(zE Calculate TF from block diagram – Example 3 (cont’) sG )( 20 s s zzG )1()( 1 Z 2.05e s 2 .5)( s esG 2 )1()20( zz )1(10 z 31)1( sz Z 3 11 )1(2 .)1(5 z zz 2)1( .)( zzzG sHsG )()( s zzGH )1()( 1 Z 1.0)( sH sG )()1(10 1 z zzT s 3 2 3 )1(2 )1(1 Z s z. Z )1(01.0)( zzGH 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 28 sTs eez 2.02)1( zz Calculate TF from block diagram – Example 3 (cont’) Th l d l t f f ti e c ose - oop rans er unc on: 2 )1(1.0.210 zz )()(1 )()()( zGHzG zGzGzG C C k 2 )1(01.0.2101 )1( zz zzz )1(zzz 2.08.02 zz 1 )1(1.0)( 210)( zG zzGC 02.008.01.12 )( 234 zzzzzGk 2 )1(01.0)( )1( zzGH zz z 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 29 2)1( zz State-space model of discrete system 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 30 The discrete state space (SS) equation The state-space model of a discrete system is a set of first- order difference equations of the form: )()()1( krkk BxAx )()( kky d dd xC h n aaa 11211 b1 w ere: )(1 kx n d aaa 22221A d b 2B )()( 2 kxk x nnnn aaa 21 nb C )(kxn 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 31 nd ccc 21 Derive SS equation from difference equation Case 1: The right hand side of the difference equation- does not involve the differences of the input: )()()1()1()( kubkyakyankyankya ... 0110 nn Define the state variables: The first state variable is the t t f th t )()(1 kykx ou pu o e sys em; The ith state variable (i=2..n) is set to be one sample time- )1()( )1()( 23 12 kxkx kxkx advanced of the (i1)th state variable. )1()( 1 kxkx nn 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 32 Derive SS equation from difference equation Case 1 (cont’) )()()1( kukk dd BxAx The state equations: )()( kky d xC where: 0010 0 0100 0 )( )( 2 1 kx kx 121 1000 aaaa d A 0 0 b dB )( )( kx k x 0000 aaaa nnn 0a n 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 33 0001 dC Derive SS equation from difference equation – Case 1 example Write the state equations of the system described by: )()( kykx )(3)(4)1(5)2()3(2 kukykykyky )1()( )1()( 12 1 kxkx kxkx Define the state variables: 23 The state equations: )()()1( krkk dd BxAx )()( kky d xC 010010 0 0 0 0 dB where: 50522 100 100 123 aaa dA 5.1 0 0 a b 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 34 .. 000 aaa 001dC Derive SS equation from difference equation Case 2: The right-hand side of the difference equation involve the differences of the input: )()1()1()( 110 kyakyankyankya Define the state variable: ... nn )()1(...)2()1( 1210 kubkubnkubnkub nn The first state variable is the output of the system; )()(1 kykx The ith state variable (i=2..n) is set to be one sample time ad anced of the (i 1)th )()1()( )()1()( 223 112 kukxkx kukxkx - v state variable minus a quantity proportional to the )()1()( 11 kukxkx nnn 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 35 input Derive SS equation from difference equation Case 2 (cont’) )()( )()()1( kk kukk dd C BxAx The state equation: y d x where: 0010 0100 2 1 )( )( 2 1 kx kx 121 1000 aaaa nnn d A n d 1 B )( )( kx k n x 0000 aaaa n 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 36 0001 dC Derive SS equation from difference equation Case 2 (cont’) The coefficient i in the vector Bd are defined as: 0 0 1 a b 0 111 2 a ab 0 12212 3 a aab 1122111 aaab nnnn 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 37 0a n Derive SS equation from difference equation – Case 2 example Write the state equations of the system described by: )()( kykx )(3)2()(4)1(5)2()3(2 kukukykykyky )()1()( )()1()( 112 1 krkxkx krkxkx Define the state variables: 223 The state equations: )()()1( kukk dd BxAx )()( kky d xC 010010 1 B where: 50522 100 100 123 aaa dA 3 2 d 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 38 .. 000 aaa 001dC Derive SS from difference equation – Case 2 example (cont’) Th ffi i t i th t B l l t de coe c en i n e vec or d are ca cu a e as: 5010b 25.05.010 . 2 111 2 0 1 ab a 375.0 2 5.05)25.0(13 2 12212 3 0 aab a 0a 50 3750 25.0 . dB 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 39 . Formulation of SS from block diagram y(t)r(t) e (t)e(kT)e(t) + G(s)ZOHT R Step 1: Write the state space equations of the open-loop ti tcon nuous sys em: y(t) G(s) eR(t) )()( )()()( tt tett R Cx BAxx y Step 2: Calculate the transient matrix: )]([)( 1 st L 1 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 40 )( -ss AI where Formulation of SS equations from block diagram (cont’) Step 3: Discretizing the open-loop continuous SS equation: G(s)ZOH e(kT) y(kT) )()(])1[( kTekTTk Rdd BxAx A T d T )( with )()( kTkTy d xC CC B d d Bd 0 )( Step 4: Write the closed-loop discrete state equations (which has input signal r(kT)) )()(])1[( kTrkTTk dddd BxCBAx 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 41 )()( kTkTy d xC Formulation of SS equations from block diagram – Example F l t th SS ti d ibi th t ormu a e e equa ons escr ng e sys em: y(t)r(t) e (t)e(kT)e(t) x x + ZOHT R s 1 as 1 K2 1 where a = 2, T = 0.5, K = 10 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 42 Formulation of state equations from block diagram – Example (cont’) Solution: y(t)eR(t) s 1 2 1 s 10 x2 x1 Step 1: s sXsX )()( 21 )()( 21 sXssX )()( 21 txtx 2 )()(2 s sEsX R )()()2( 2 sEsXs R )()(2)( 22 tetxtx R )( 1 0 )( )( 20 10 )( )( 2 1 2 1 te tx tx tx tx R BA )(010)(10)( 11 txtxty 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 43 )(2 txC Formulation of state equations from block diagram – Example (cont’) Step 2: Calculate the transient matrix 11 1 20 1 20 10 10 01 )( s s sss -AI 1 )2( 11 0 12 )2( 1 ssss 2 0 s sss 1111 11 LL 10 )2( 2 10 )2()]([)( 1 11 ssssssst L LL 2ss tet 2 )1( 2 11)( 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 44 te 20 Formulation of state equations from block diagram – Example (cont’) Step 3: Discretizing the open )()(])1[( kTekTTk BxAx- loop continuous state equations: )()( kTkTy d Rdd xC 11 368.00 316.01 0 )1( 2 1 0 )1( 2 1)( 5.02 5.02 2 2 e e e eT Tt t t dA TTT d d e ed e ed 0 2 2 0 2 2 0 )1( 2 1 1 0 0 )1( 2 11)( BB 092.02 1 22 5.0 22 22 5.02 2 2 ee T 316.0 2 1 22 5.02 0 2 ee 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 45 010 CCd Formulation of state equations from block diagram – Example (cont’) Step 4: The closed-loop discrete state equations: )()( )()(])1[( kTkT kTrkTTk dddd C BxCBAx y d x 316.0080.0010092.0316.01CBAwhere Conclusion: The closed-loop state equation is: 368.0160.3316.0368.00ddd )( 092.0)(316.0080.0)1( 11 kr kxkx 316.0)(368.0160.3)1( 22 kxkx )(010)( 1 kxky 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 46 )( . 2 kx Calculate transfer function from state equation Given the state equation )()()1( kukk dd BxAx )()( kky d xC Th di t f f ti i e correspon ng rans er unc on s: zzYzG BAIC 1)()()( dddzU )( 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 47 Calculate transfer function from state equation - Example Calculate the TF of the system described by the SS equation: )()( )()()1( kky kukk d dd xC BxAx 1070 10 dA 2 0 dB 01dC Solution: The transfer function is: .. ddd zzG BAIC 1)()( 01001 01 1 z 21.07.010 2)(G 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 48 7.01.02 zzz
File đính kèm:
- bai_giang_fundamentals_of_control_systems_chapter_7_mathemat.pdf