Bài giảng Fundamentals of Control Systems - Chapter 2: Mathematical model of continuous systems - Huỳnh Thái Hoàng
Content
Transfer function
Block diagram algebra
Signal flow diagram
State space equation
Linearized models of nonlinear systems
Nonlinear state equation
Linearized equation of stat
The concept of mathematical model
.edu.vn/~hthoang/ Nonlinear systems Nonlinear systems do not satisfy the superposition principle and cannot be described by a linear differential equation. Most of the practical systems are nonlinear: Fluid system (Ex: liquid tank,) Thermal system (Ex: furnace ), Mechanical system (Ex: robot arm,.) Electro magnetic system (TD: motor )- , Hybrid system , 6 December 2013 99© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Mathematical model of nonlinear systems Input output relationship of a continuous nonlinear system– can be expressed in the form of a nonlinear differential equations. )(,)(,,)(),(,)(,,)()( 1 1 tu dt tdu dt tudty dt tdy dt tydg dt tyd m m n n n n where: u(t): input signal, y(t): output signal, g(.): nonlinear function 6 December 2013 100© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Nonlinear system – Example 1 a: cross area of the dischage valve A: cross area of the tank g: gravity acceleration k t t(t) u(t) qin : cons an CD: discharge constant y qout Balance equation: )()()( tqtqtyA outin )()( tkutq where: in )(2)( tgyaCtq Dout (first order li t ) )(2)(1)( tgyaCtkuty D 6 December 2013 101 non near sys em A © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Nonlinear system – Example 2 J: moment inertia of the robot arm M: mass of the robot arm m: object mass l: length of robot armm l lC : distance from center of gravity to rotary axis B: friction constant g: gravitational acceleration u u(t): input torque (t): robot arm angle According to Newton’s Law )(cos)()()()( 2 tugMlmltBtmlJ C )( )( 1cos )( )()( )( )( 222 tumlJ g mlJ Mlmlt mlJ Bt C 6 December 2013 102 (second order nonlinear system) © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Nonlinear system – Example 3 : steering angle : ship angle k: constant i: constant(t) (t) Moving direction The differential equation describing the steering dynamic of a ship: )()()()(1)(11)( 3 ttktttt (third order nonlinear system) 3 212121 6 December 2013 103© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Describing nonlinear systems by state equations A continuous nonlinear system can be described by the state equation: ))(),(()( tutt xfx ))(),(()( tuthty x where: u(t): input, y(t): output, x(t): state vector, x(t) = [x1(t), x2(t),,xn(t)]T f(.), h(.): nonlinear functions 6 December 2013 104© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ State-space model of nonlinear system – Example 1 Differential equation: (t) u(t) qin )(2)(1)( tgyaCtku A ty D Define the state variable: )()( y qout 1 tytx St t ti ))(),(()( tutt xfx a e equa on: ))(),(()( tuthty x )( )(2 ),( 1 tu A k A tgxaC u D xfwhere 6 December 2013 105 )())(),(( 1 txtuth x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ State-space model of nonlinear system – Example 2 Differential equation: m u l )( )( 1cos )( )()( )( )( 222 tumlJ g mlJ Mlmlt mlJ Bt C Define the state variable: )()( )()( 2 1 ttx ttx State equation: ))()(()( ))(),(()( h tutt xfx , tutty x )(2 tx where )( )( 1)( )( )(cos )( )(),( 22212 tumlJ tx mlJ Btx mlJ gMlmlu Cxf 6 December 2013 106 )())(),(( 1 txtuth x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Equilibrium points of a nonlinear system Consider a nonlinear system described by the diff. equation: ))(),(()( ))(),(()( tuthty tutt x xfx The state is called the equilibrium point of the nonlinear system if the system is at the state and the control signal is x x If is equilibrium point of the nonlinear system then:)( ux fixed at then the system will stay at state forever.u x , 0))(),(( , uutut xxxf The equilibrium point is also called the stationary point of the nonlinear system. 6 December 2013 107© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Equilibrium point of nonlinear system – Example 1 Consider a nonlinear system described by the state equation: )(2)( )().( )( )( 21 21 2 1 txtx utxtx tx tx Find the equilibrium point when 1)( utu Solution: 0))(),(( , uutut xxxf The equilibrium point(s) are the solution to the equation: 02 01. 21 21 xx xx 2 21x 2 21x or 6 December 2013 108 22x 22x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Equilibrium point of nonlinear system – Example 2 C id li t d ib d b th t t ti ons er a non near sys em escr e y e s a e equa on: uxxx 2 3 2 21 1 ux xxx x x 2 3 313 3 2 )sin( Find the equilibrium point when 0)( utu 1xy 6 December 2013 109© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized model of a nonlinear system around an equilibrium point Consider a nonlinear system described by the diff equation: ))()(()( ))(),(()( tuthty tutt x xfx . (1) , Expanding Taylor series for f(x,u) and h(x,u) around the equilibrium point , we can approximate the nonlinear system (1) by the following linearized state equation: ),( ux )(~)(~)(~ )(~)(~)(~ tutty tutt DxC BxAx (2) where: ututu tt )()(~ )()(~ xxx 6 December 2013 110 ytyty )()(~ )),(( uhy x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized model of a nonlinear system around an equilibrium point Th t i f th li i d t t ti l l t d e ma r x o e near ze s a e equa on are ca cu a e as follow: 1 2 1 1 1 n fff x f x f x f 2 1 f u f 2 2 2 1 2 nxxxA f uB )(21 un nnn x f x f x f ,x )( u n u ,x )(21 nx h x h x hC )( uu h x D 6 December 2013 111 u,x , © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 1 The parameter of the tank: u(t) qin 3 22 80/150 100 ,1 CVk cmAcma y(t) qout 2sec/981 . ,.sec cmg cm D Nonlinear state equation: ))()(()( ))(),(()( tuthty tutt x xfx , )(94650)(35440)( )(2 )( 1 k tgxaCDf where .., 1 tutxtuAA u x )())(),(( 1 txtuth x 6 December 2013 112© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 1 (cont’) Linearize the system around y = 20cm: The equilibrium point: 201 x 05.13544.0),( 1 uxuxf 9465.0u 6 December 2013 113© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 1 (cont’) The matrix of the linearized state space model: 0396.021 D gaCfA - 1 hC 2 )(1)(1 uu xAx ,x,x )(1 ux ,x 5.1 )()( 1 uu A k u f ,x,x B 0 )( uu h ,x D The linearized state equation describing the system around the equilibrium point y=20cm is: )( )(2 ),( 1 tu A k A tgxaC u D xf )(~)(~ )(~5.1)(~0396.0)(~ tutt xx 6 December 2013 114 )())(),(( 1 txtuth x tty x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 2 The parameters of the robot: 2 C 02050 1.0,2.0 ,5.0 mkgJkgM kgmmlml m u l 2sec/81.9 ,005.0 ..,. mgB Nonlinear state equation : ))()(()( ))(),(()( tuthty tutt x xfx , )(2 tx where: )( )( 1)( )( )(cos )( )(),( 22212 tumlJ tx mlJ Btx mlJ gMlmlu Cxf 6 December 2013 115 )())(),(( 1 txtuth x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 2 (cont’) Linearize the system around the equilibrium point y = /6 (rad): Calculating the equilibrium point: 6/x1 01cos)(),( 2 uxBxgMlml x u Cxf )()()( 22212 mlJmlJmlJ 02x 2744.1u Th th ilib i i t i 6/xen e equ r um po n s: 02 1 x x 27441 6 December 2013 116 .u © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 2 (cont’) The system matrix around the equilibrium point: 1211 aa aa A 0 1 1 11 x fa 1 )(2 1 12 x fa 2221 )( u,x 12 2 21 )(sin )( C txMlmlfa u,x )()(1 )( uu mlJx ,x,x 2 Bfa 1)( )( )( 2 BgMlml tx u Cxf )( 2 )(2 22 )( uu mlJx ,x,x 6 December 2013 117 )()()()()(cos)( , 22212 tumlJ tx mlJ tx mlJ © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 2 (cont’) The input matrix around the equilibrium point: 1 b b B 01fb 2 )( 1 uu ,x 1f 2 )( 2 2 mlJu b u ,x )(1)()()( )( )( 2 BgMlml tx u Cxf 6 December 2013 118 )()(cos)( , 22212 tumlJ tx mlJ tx mlJ © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 2 (cont’) The output matrix around the equilibrium point: 1 1 1 x hc 21 ccC 0 )(2 2 x hc )( u,x u,x 1dD 0 )( 1 u hd u,x Then the linearized state equation is: )(~)(~)(~ )(~)(~)(~ ttt tutt DxC BxAx uy 10 A 0 B 01C 0D 2221 aa 2b 6 December 2013 119 )(),( 1 txuh x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Regulating nonlinear system around equilibrium point Drive the nonlinear system to the neighbor of the equilibrium point (the simplest way is to use an ON-OFF controller) Around the equilibrium point, use a linear controller to maintain the system around the equilibrium point. Linear r(t) Nonlinear system+ y(t) control u(t)e(t) ON-OFF Mode select 6 December 2013 120© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/
File đính kèm:
- bai_giang_fundamentals_of_control_systems_chapter_2_mathemat.pdf