Bài giảng Dụng cụ bán dẫn - Chương 3: Các hiện tượng vận chuyển hạt dẫn

Giới thiệu

 Trong chương này, chúng ta khảo sát các hiện tượng vận

chuyển khác nhau trong các dụng cụ bán dẫn.

 Các quá trình vận chuyển bao gồm trôi, khuếch tán, tái hợp,

sinh, phát xạ nhiệt ion, tunnel [đường hầm], và ion hóa va

chạm. Chúng ta xét các chuyển động của hạt dẫn (electron và

lỗ) trong bán dẫn dưới ảnh hưởng của điện trường và gradient

nồng độ hạt dẫn.

 Chúng ta cũng bàn về các khái niệm điều kiện không cân

bằng mà ở đó tích số nồng độ hạt dẫn np khác với giá trị cân

bằng của nó là ni2.

 Tiếp theo xét điều kiện trở lại trạng thái cân bằng thông qua

các quá trình sinh-tái hợp.

 Sau đó chúng ta tìm được các phương trình cơ bản cho việc

vận hành dụng cụ bán dẫn, bao gồm các phương trình mật độ

dòng điện hiện tại và phương trình liên tục

pdf75 trang | Chuyên mục: Dụng Cụ Bán Dẫn | Chia sẻ: tuando | Lượt xem: 662 | Lượt tải: 0download
Tóm tắt nội dung Bài giảng Dụng cụ bán dẫn - Chương 3: Các hiện tượng vận chuyển hạt dẫn, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
i hợp trực tiếp (3)
55
 Tốc độ thay đổi nồng độ lỗ được cho bởi 
 Ở trạng thái xác lập, dpn/dt =0. Từ phương trình (39), ta có
 với U là tốc độ tái hợp. Thay các phương trình (35) và (36) vào phương 
trình (40) cho 
 Đối với bơm mức thấp p, pno << nno, phương trình (41) được đơn giản 
thành
 Do đó, tốc độ tái hợp tỉ lệ với nồng độ hạt dẫn thiểu số thừa. Hiển nhiên, 
U=0 ở điều kiện cân bằng nhiệt. Hằng số tỉ lệ 1/nno được gọi là thời 
gian sống t của các hạt dẫn thiểu số thừa, hoặc
 với
3.3.1 Sự tái hợp trực tiếp (4)
56
 Ý nghĩa vật lý của thời gian sống có thể được minh họa tốt nhất bằng đáp ứng 
quá độ của dụng cụ sau khi lấy nguồn sáng đi một cách đột ngột. Xét mẫu bán 
dẫn loại N như trong hình 11a, nó được chiếu ánh sáng vào và có các cặp điện 
tử-lỗ được sinh ra trong suốt mẫu bán dẫn với tốc độ sinh GL. Biểu thức phụ 
thuộc thời gian được cho bởi phương trình (39). Ở trạng thái xác lập, từ các 
phương trình 40 và 43:
hoặc
 Nếu ở thời điểm bất kỳ, thí dụ t=0, ánh sáng đột ngột bị tắt, các điều kiện biên là 
pn(t = 0) = pno + pGL, được cho bời phương trình (45a) và pn(t  c) = pno. Biểu 
thức phụ thuộc thời gian của phương trình (39) trở thành
 và nghiệm của nó là
3.3.1 Sự tái hợp trực tiếp (5) 
Thời gian sống
57
3.3.1 Sự tái hợp trực tiếp (6) – Thời gian sống
Hình 11. Sự suy giảm của các 
hạt dẫn bị kích thích bằng ánh 
sáng.
(a) Mẫu bán dẫn loại N dưới 
chiếu ánh sáng không đổi.
(b) Sự suy giảm của các hạt 
dẫn thiểu số (lỗ) theo thời gian.
(c) Sơ đồ đo thời gian sống của 
hạt dẫn thiểu số.
58
 Hình 11b cho thấy sự thay đổi của pn theo thời gian. Các hạt dẫn thiểu số tái 
hợp với các hạt dẫn đa số và suy giảm theo hàm mũ với thời hằng p, mà tương 
ứng với thời gian sống được định nghĩa trong phương trình (44).
 Trường hợp này minh họa ý tưởng chính của việc đo thời gian sống hạt dẫn 
bằng cách dùng phương pháp quang dẫn. Hình 11c minh họa cách thiết lập sơ 
đồ đo. Những hạt dẫn thừa (được sinh ra đều khắp trong mẫu bán dẫn bởi 
xung ánh sáng) làm gia tăng tức thời độ dẫn điện. Sự gia tăng độ dẫn điện làm 
cho sụt áp trên mẫu giảm xuống khi có dòng điện không đổi chạy qua. Sự suy 
giảm độ dẫn điện có thể được quan sát trên dao động ký và ta đo được thời 
gian sống của các hạt dẫn thiểu số thừa.
3.3.1 Sự tái hợp trực tiếp (7) – Thời gian sống
59
 Với các bán dẫn khe năng lượng gián tiếp như Si, quá trình tái hợp 
trực tiếp thì không thể xảy ra, bởi vì các điện tử ở đáy dải dẫn có 
momentum khác không so với các lỗ ở đỉnh dải hóa trị. 
 Sự chuyển tiếp trực tiếp mà bảo tồn cả năng lượng và momentum thì 
không thể không có tương tác đồng thời với mạng tinh thể. Do đó quá 
trình tái hợp chính trong những bán dẫn như vậy là chuyển tiếp gián 
tiếp qua các trạng thái năng lượng được cục bộ hóa trong khe năng 
lượng dải cấm. Những trạng thái hoạt động như những cục đá tạm 
dừng giữa dải dẫn và dải hóa trị.
 Hình 12 cho thấy nhiều chuyển tiếp khác nhau xảy ra trong các quá 
trình tái hợp qua các trạng thái mức trung gian (cũng được gọi là các 
trung tâm tái hợp). Ta minh họa trạng thái thay đổi của trung tâm 
trước khi và sau khi mỗi một trong bốn chuyển tiếp xảy ra. Các mũi 
tên trong hình vẽ chỉ chuyển tiếp của điện tử trong 1 quá trình cụ thể. 
Minh họa này cũng dùng cho trường hợp của 1 trung tâm tái hợp với 
mức năng lượng trung hòa khi không bị chiếm bởi điện tử và âm khi 
bị chiếm bởi điện tử.
3.3.2 Sự tái hợp gián tiếp
60
3.3.2 Sự tái hợp gián tiếp (2)
Hình 12. Các quá trình sinh-tái hợp gián tiếp ở điều kiện cân bằng nhiệt.
61
 Trong tái hợp gián tiếp, suy ra tốc độ tái hợp thì phức tạp hơn (xem phụ lục I), tốc độ tái hợp 
được tính theo
 với vth là vận tốc nhiệt của các hạt dẫn (phương trình 1), và n là phần ngang bắt được của 
các điện tử. Đại lượng n mô tả sự công hiệu của trung tâm bắt điện tử là số đo cho biết điện 
tử tới gần trung tâm bao nhiêu sẽ bị bắt. p là phần ngang bắt được của các lỗ.
 Ta có thể đơn giản hóa biểu thức của U theo Et bằng cách giả thiết n=p =0 . Khi đó 
phương trình 48 trở thành
 Dưới điều kiện bơm thấp trong bán dẫn loại N để nn >> pn, tốc độ tái hợp có thể được viết 
lại như sau
 Tốc độ tái hợp với tái hợp gián tiếp được cho bởi cùng biểu thức trong phương trình 43; tuy 
nhiên. p phụ thuộc vào những vị trí của các trung tâm tái hợp.
3.3.2 Sự tái hợp gián tiếp (3)
62
 Hình 13 cho thấy các liên kết ở bề mặt bán dẫn. Do sự bất liên tục đột ngột của 
cấu trúc mạng tinh thể ở bề mặt, một số lớn các trạng thái năng lượng bị cục bố 
hóa hoặc có thể có các trung tâm sinh-tái hợp ở miền bề mặt. Những trạng thái 
năng lượng này, được gọi là những trạng thái bề mặt (surface states), có thể làm 
tăng nhiều tốc độ tái hợp ở bề mặt. Sự tái hợp bề mặt tương tự với những gì đã 
xét ở những trung tâm bên trong. Tổng số các hạt dẫn tái hợp ở bề mặt trên 1 đơn 
vị diện tích trong 1 giây có thể được biểu diễn với dạng tương tự phương trình 48. 
Với điều kiện bơm thấp, và với trường hợp giới hạn ở đó nồng độ điện tử ở bề 
mặt chủ yếu bằng nồng độ hạt dẫn đa số ở phần khối, tổng số hạt dẫn tái hợp ở bề 
mặt trên 1 đơn vị diện tích trong 1 giây có thể được đơn giản hóa thành
với ps chỉ nồng độ lỗ ở bề mặt, và Nst là mật độ trung tâm tái hợp trên 1 đơn vị 
diện tích trong miền bề mặt. Vì tích số vthpNst có thứ nguyên là cm3/giây, nó 
được gọi là vận tốc tái hợp bề mặt bơm thấp Slr:
3.3.3 Sự tái hợp bề mặt
63
3.3.3 Sự tái hợp bề mặt (2)
Hình 13. Sơ đồ các liên kết ỏ bề mặt bán dẫn sạch. Những liên kết này 
đẳng hướng (anisotropic) và khác với các liên kết trong miền khối.
64
Surface Recombination 
65
 Sự tái hợp cặp điện tử-lỗ 
 Truyền năng lượng hoặc momentum đến 
hạt thứ ba (điện tử hay lỗ)
 Thí dụ
 Tái hợp trực tiếp giải phóng năng lượng 
 Điện tử thứ hai trong dải dẫn hấp thu 
năng lượng và trở thành điện tử có năng 
lượng
 Điện tử này mất năng lượng vào mạng 
tinh thể bởi các sự kiện tán xạ
 Quan trọng khi pha tạp chất nhiều hoặc ở 
mức bơm cao (high injection level)
RAug=Bn2p hoặc Bnp2
với hằng số B phụ thuộc nhiều vào nhiệt 
độ
 Quá trình Auger liên quan với 3 hạt.
3.3.4 Sự tái hợp Auger
66
3.4 Phương trình liên tục
67
 Trong những phần trước ta đã xét các hiệu ứng riêng biệt như trôi do điện 
trường, khuếch tán do gradient nồng độ, và tái hợp các hạt dẫn qua các trung 
tâm tái hợp ở các mức trung gian. Bây giờ ta xét toàn bộ hiệu ứng khi trôi, 
khuếch tán, và tái hợp xảy ra đồng thời trong vật liệu bán dẫn. Phương trình 
cho thấy tất cả các hiệu ứng này được gọi là phương trình liên tục (continuity 
equation).
 Để suy ra phương trình liên tục 1 chiều cho điện tử, ta xét một miếng mỏng rất 
nhỏ với độ dày dx tại x (Hình 15). Số điện tử trong miếng mỏng có thể tăng do 
dòng điện chạy vào miếng mỏng và sinh hạt dẫn trong miếng mỏng. Tốc độ 
tăng toàn bộ của điện tử là tổng đại số của 4 thành phần: số điện tử đi vào 
miếng mỏng tại x, trừ với số điện tử đi ra tại x + dx, cộng với tốc độ điện tử 
được sinh ra, trừ với tốc độ điện tử bị tái hợp trong miếng mỏng.
 Hai thành phần đầu được tìm ra bằng cách chia các dòng điện tại mỗi bên của 
miếng mỏng bởi điện tích của điện tử. Tốc độ sinh và tái hợp được ký hiệu 
bằng Gn và Rn. 
Phương trình liên tục (2)
68
Phương trình liên tục (3)
Hình 15. Luồng dòng điện và các quá trình sinh-tái hợp trong một miếng rất mỏng có độ dày dx
69
 Tốc độ tổng cộng của sự thay đổi số điện tử trong miếng mỏng 
là
với A là tiết diện ngang và Adx là thể tích của miếng mỏng. 
Khai triển Taylor cho dòng điện ở x + dx cho
 Như vậy ta có được phương trình liên tục cho điện tử:
 Tương tự, ta có thể suy ra phương trình liên tục cho lỗ, ngoại 
trừ dấu của số hạng thứ nhất ở vế phải phương trình 56 bị đổi 
dấu do điện tích dương với lỗ:
Phương trình liên tục (4)
70
 Ta có thể thay thế các biểu thức dòng điện từ các phương trình 31 và 32 và các 
biểu thức tái hợp từ phương trình 43 vào các phương trình 56 và 57. Trong 
trường hợp 1 chiều dưới điều kiện mức bơm thấp, phương trình liên tục cho 
các hạt dẫn thiểu số là
 Ngoài các phương trình liên tục, phương trình Poisson
phải được thỏa, với s là hằng số điện môi bán dẫn và s là mật độ điện tích 
không gian là tổng đại số của mật hạt dẫn và các nồng độ tạp chất bị ion hóa, 
q(p - n + ND+- NA-) .
 Về nguyên tắc, các phương trình từ 58 đến 60 cùng với những điều kiện biên 
thích hợp cho nghiệm duy nhất. Bởi vì độ phức tạp về đại số của bộ phương 
trình này, trong phần lớn các trường hợp các phương trình được đơn giản hóa 
bằng các xấp xỉ vật lý để đạt được nghiệm dễ hơn.
Phương trình liên tục (4)
71
2
n n n
2 2
P p P
p p p
x D L
   
 

P P pL D 
2
n n
P 2
p
0
p p
D
x 
  
 

n n0 (0)p p  
N N nL D Tương tự,
Chiều dài khuếch tán hạt dẫn thiểu số (1/4)
Chapter 3 Carrier Action
Xét trường hợp đặc biệt (xem hình 16):
Bơm vào hạt dẫn thiểu số (lỗ) không đổi ở x = 0
Ở xác lập, không có hấp thu ánh sáng với x > 0
L 0 for 0G x 
Chiều dài khuếch tán lỗ LP được định nghĩa:
72
Chiều dài khuếch tán hạt dẫn thiểu số (2/4)
Bán dẫn Si loại N
73
2
n n
2 2
P
p p
x L
  


P P
n ( )
x L x Lp x Ae Be  
n ( ) 0p  
n n0(0)p p  
P
n n0( )
x Lp x p e  
Chapter 3 Carrier Action
 Lời giải tổng quát của phương trình là:
A và B là những hằng số được xác định bởi các điều kiện 
biên:
Do đó, ta có nghiệm là:
 0B 
n0 A p  
• Về mặt vật lý, LP và LN biêu diễn 
khoảng cách trung bình mà hạt dẫn 
thiểu số có thể khuếch tán trước khi 
nó tái hợp với hạt dẫn đa số.
Chiều dài khuếch tán hạt dẫn thiểu số (3/4)
74
2
p 437 cm V s  
P p
kT
D
q

P P pL D 
Chapter 3 Carrier Action
Cho trước ND=1016 cm–3, τp = 10–6 s. Tính LP.
225.86 mV 437 cm V s  
211.3cm s
2 611.3cm s 10 s 
33.361 10 cm 
= 33.61 m
Từ đồ thị,
Chiều dài khuếch tán hạt dẫn thiểu số (4/4)
75
Tóm tắt các phương trình bán dẫn 

File đính kèm:

  • pdfbai_giang_dung_cu_ban_dan_chuong_3_cac_hien_tuong_van_chuyen.pdf
Tài liệu liên quan