Bài giảng Computer graphics and virtual reality - Lesson 3: Các giải thuật cơ sở - Lê Tấn Hùng
Nội dung
z Các giải thuật xén tỉa - Clipping
z Các thuật toán tô miền kín
z Phép xử lý Antialiasing
Tóm tắt nội dung Bài giảng Computer graphics and virtual reality - Lesson 3: Các giải thuật cơ sở - Lê Tấn Hùng, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
-Beck Liang Barsky z Giải Cohen-Sutherland yêu cầu cửa sổ là hình chữ nhật, các cạnh là cạnh của màn hình z Vấn đề nảy sinh khi cửa sổ clip là 1 đa giác bất kỳ hoặc hình chữ nhật quay đi 1 góc z Giải thuật Liang-Barsky tối ưu khi tìm giao điểm của đoạn thẳng với cử sổ hiển thị z Nicholl-Lee-Nicholl reducing redundant boundary clipping by identifying edge and corner regions 18 3-D Clipping z Before actually drawing on the screen, we have to clip (Why?) z Can we transform to screen coordinates first, then clip in 2D? – Correctness: shouldn’t draw objects behind viewer (what will an object with negative z coordinates do in our perspective matrix?) (draw it) Khoa CNTT-DDHBK Hà nội Email: hunglt@it-hut.edu.vn 0913030731 4 19 Giải thuật đường biên (Boundary - File Algorithm) z Giải_thuật_đường_biên ( x, y ) Color : biến mầu Begin Color = Readpixel ( x, y ); If ( Color = mầu tô ) or ( Color = mầu đường biên ) Kết thúc vì chạm biên hoặc chạm phần đã tô Else Putcolor(x,y, mauto) Giải_thuật_đường_biên ( x+1, y ); Giải_thuật_đường_biên ( x-1, y ); Giải_thuật_đường_biên ( x, y+1 ); Giải_thuật_đường_biên ( x, y-1 ); // Thực hiện lại giải thuật với các điểm lân cận End. 20 Edge Walking z Basic idea: – Draw edges vertically – Fill in horizontal spans for each scanline – Interpolate colors down edges – At each scanline, interpolate edge colors across span 21 Edge Walking: Notes z Order vertices in x and y – 3 cases: break left, break right, no break z Walk down left and right edges – Fill each span – Until breakpoint or bottom vertex is reached z Advantage: can be made very fast z Disadvantages: – Lots of finicky special cases – Tough to get right – Need to pay attention to fractional offsets 22 Edge Walking: Notes z Fractional offsets: z Be careful when interpolating color values! z Also: beware gaps between adjacent edges 23 Giải thuật đường quét Scan-Line Algorithm z The scan-line algorithm uses edge-coherence and incremental integer calculations for maximum efficiency: – Tạo bảng edge table (ET) tập của các cạnh đa giác theo thứ tự giá trị ymin của chúng – Tạo bảng active edge table (AET) tập các cạnh giao vớI đoạn thẳng quét scan-line z Trong tiến trình quét các cạnh sẽ chuyển từ ET ra AET. z Các cạnh sẽ ở trong AET cho đến khi giá trị ymax của cạnh đạt tới = scanline z Lúc nay cạnh sẽ bị loại ra khỏi AET. 24 Edge Table (ET) Note: line (8,6) → (13,6) has been deleted according to the scan rules ymax xmin numerator denominator scan-line (0,0) (15,15) 5 31 −=⇒ m Khoa CNTT-DDHBK Hà nội Email: hunglt@it-hut.edu.vn 0913030731 5 25 Giải thuật dòng quét-Scanline cho việc tô mầu vùng AET = yma x current x denominator current numerator round up round down 26 Active Edge Table (AET) ymax current x denominator AET = current numerator round up round down 27 Scan-Line Algorithm y = y of first non empty entry in ET AET = null repeat move all ET entries in slot y to AET sort AET entries according to xminfill spans using pairs of AET entries for all AET members if ymax = y then remove from AETy = y+1 for all AET members update numerator if numerator>denominator numerator=numerator-denominator x = x+1 until AET and ET empty 28 Rasterizing Triangles z Interactive graphics hardware commonly uses edge walking or edge equation techniques for rasterizing triangles z Two techniques we won’t talk about much: – Recursive subdivision of primitive into micropolygons (REYES, Renderman) – Recursive subdivision of screen (Warnock) 29 Recursive Triangle Subdivision 30 Edge Equations z An edge equation is simply the equation of the line containing that edge – Q: What is the equation of a 2D line? – A: Ax + By + C = 0 – Q: Given a point (x,y), what does plugging x & y into this equation tell us? – A: Whether the point is: z On the line: Ax + By + C = 0 z “Above” the line: Ax + By + C > 0 z “Below” the line: Ax + By + C < 0 Khoa CNTT-DDHBK Hà nội Email: hunglt@it-hut.edu.vn 0913030731 6 31 Edge Equations z Edge equations thus define two half-spaces: z And a triangle can be defined as the intersection of three positive half-spaces: A1x + B1y + C1 < 0 A 2 x + B 2 y + C 2 < 0 A 3 x + B 3 y + C 3 < 0 A1x + B1y + C1 > 0 A 3 x + B 3 y + C 3 > 0 A2 x + B 2 y + C 2 > 0 32 Edge Equations z Sosimply turn on those pixels for which all edge equations evaluate to > 0: +++ - - - 33 Using Edge Equations z An aside: How do you suppose edge equations are implemented in hardware? z How would you implement an edge-equation rasterizer in software? – Which pixels do you consider? – How do you compute the edge equations? – How do you orient them correctly? 34 Using Edge Equations z Which pixels: compute min,max bounding box z Edge equations: compute from vertices z Orientation: ensure area is positive (why?) 35 Hiệu ứng răng cưa Aliasing - Antialiasing z Aliasing: signal processing term with very specific meaning z Aliasing: computer graphics term for any unwanted visual artifact z Antialiasing: computer graphics term for avoiding unwanted artifacts 36 Signal Processing z Raster display: regular sampling of a continuous function (Really?) z Think about sampling a 1-D function: Khoa CNTT-DDHBK Hà nội Email: hunglt@it-hut.edu.vn 0913030731 7 37 Signal Processing z Sampling a 1-D function: 38 Signal Processing z Sampling a 1-D function: 39 Signal Processing z Sampling a 1-D function: – What do you notice? 40 Signal Processing z Sampling a 1-D function: what do you notice? – Jagged, not smooth 41 Signal Processing z Sampling a 1-D function: what do you notice? – Jagged, not smooth – Loses information! 42 Antialiasing z Méo thông tin trong quá trình lấy mẫu tần số thấp z In raster images – leads to jagged edges with hiệu ứng bậc thang – staircase effect z Việc làm giảm hiệu ứng méo thông tin bằng phương pháp bù trừ sampling frequency Khoa CNTT-DDHBK Hà nội Email: hunglt@it-hut.edu.vn 0913030731 8 43 Phương pháp khử hiệu ứng răng cưa Antialiasing Methods 1. Cố định tín hiệu bằng phương pháp lọc-prefiltering: Giảm độ rộng dải tần tín hiệu bỏi bộ lọc thấphơn trước khi lấy mẫu. Highest quality method, but often impractical. 2. Cố định mẫu bằng siêu mẫu supersampling: Use more samples to raise the Nyquist frequency. Simple and widely used. 3. Cố định mẫu bằng phương pháp mẫu bất kỳ - stochastic sampling: Sample randomly, not uniformly. Relatively simple, usually used in combination with supersampling. 44 Prefiltering – Lọc z Eliminate high frequencies before sampling (Foley & van Dam p. 630) – Convert I(x) to F(u) – Apply a low-pass filter (e.g., multiply F(u) by a box function) – Then sample. Result: no aliasing! z Problem: most rendering algorithms generate sampled function directly – e.g., Z-buffer, ray tracing 45 Antialiasing in the Continuous Domain z Problem with prefiltering: – Sampling and image generation inextricably linked in most renderers z Z-buffer algorithm z Ray tracing – Why? z Sự cuốn méo với các miền liên tục do hiệu ứng xấp xỉ của phương pháp tiền lọc 46 Phương pháp siêu mẫu z Supersampling cons – Doesn’t eliminate aliasing, just shifts the Nyquist limit higher z Can’t fix some scenes (e.g., checkerboard) – Tăng bộ nhớ cho việc lưu trữ z Supersampling pros – Relatively easy – Often works all right in practice – Can be added to a standard renderer 47 Antialiasing by supersampling 48 Khoa CNTT-DDHBK Hà nội Email: hunglt@it-hut.edu.vn 0913030731 9 49 anti aliasing (1) 50 Antialiasing (2) 51 The A-Buffer z Idea: approximate continuous filtering by subpixel sampling z Summing areas now becomes simple 52 The A-Buffer z Advantages: – Incorporating into scanline renderer reduces storage costs dramatically – Processing per pixel depends only on number of visible fragments – Can be implemented efficiently using bitwise logical ops on subpixel masks z Disadvantages – Still basically a supersampling algorithm – Not a hardware-friendly algorithm z Lists of potentially visible polygons can grow without limit z Work per-pixel non-deterministic 53 Recap: Antialiasing Strategies z Supersampling: sample at higher resolution, then filter down – Pros: z Conceptually simple z Easy to retrofit existing renderers z Works well most of the time – Cons: z High storage costs z Doesn’t eliminate aliasing, just shifts Nyquist limit upwards 54 Antialiasing Strategies z A-Buffer: approximate prefiltering of continuous signal by sampling – Pros: z Integrating with scan-line renderer keeps storage costs low z Can be efficiently implemented with clever bitwise operations – Cons: z Still basically a supersampling approach z Doesn’t integrate with ray-tracing Khoa CNTT-DDHBK Hà nội Email: hunglt@it-hut.edu.vn 0913030731 10 55 Stochastic Sampling z An intuitive argument: – In stochastic sampling, every region of the image has a finite probability of being sampled – Thus small features that fall between uniform sample points tend to be detected by non-uniform samples z Integrating with different renderers: – Ray tracing: z It is just as easy to fire a ray one direction as another – Z-buffer: hard, but possible z Notable example: REYES system (?) z Using image jittering is easier (more later) – A-buffer: nope z Totally built around square pixel filter and primitive-to-sample coherence 56 Stochastic Sampling z Idea: randomizing distribution of samples scatters aliases into noise z Problem: what type of random distribution to adopt? z Reason: type of randomness used affects spectral characteristics of noise into which high frequencies are converted z Problem: given a pixel, how to distribute points (samples) within it?
File đính kèm:
- bai_giang_computer_graphics_and_virtual_reality_lesson_3_cac.pdf