A Theoretical Study on the Hydrogenation of CO Over Co2Cu2 Bimetallic Catalyst Supported on MgO(200) by Means of Density Functional Theory
Abstract: Density functional theory (DFT) at GGA-PBE/DZP level was performed to study the
adsorption processes of CO and H2 on clusters Co2Cu2 and Co2Cu2 supported on MgO
(Co2Cu2/MgO) system. The electronic structures, geometries of Co2Cu2 and Co2Cu2/MgO,
adsorption energies were studied and analyzed. The optimal adsorption configurations of CO and
H2 on Co2Cu2 and Co2Cu2/MgO were determined. The results show that CO and H2 are chemically
adsorbed on Co2Cu2 and Co2Cu2/MgO systems and the adsorption process does not involve a
transition state. MgO support plays important role in the increasing of the activation ability of
Co2Cu2/MgO for CO compared to the initial cluster.
- 2a là cấu trúc bền nhất, tính chất của hệ này được kì vọng khác biệt nhiều so với tính chất của cluster Co2Cu2 ban đầu. Do đó, tiếp theo, chúng tôi tiến hành nghiên cứu khả năng hấp phụ khí CO và H2 trên cấu trúc Co2Cu2/MgO-2a và có so sánh với khả năng hấp phụ khí CO và H2 trên cluster Co2Cu2-1n. N.B. Long et al. / VNU Journal of Science: Natural Sciences and Technology, Vol. 36, No. 1 (2020) 81-89 86 2a 2b 2c 2d Hình 2. Các cấu trúc Co2Cu2/MgO (các độ dài liên kết tính theo Å). 3.2. Sự hấp phụ CO, H2 trên hệ Co2Cu2/MgO 3.2.1. Sự hấp phụ CO trên hệ Co2Cu2/MgO Khi hấp phụ CO trên Co2Cu2 và Co2Cu2/MgO có thể có các cấu trúc hấp phụ như sau: phân tử CO hấp phụ qua đầu C trên tâm hoạt động là nguyên tử Co 3a1 và 3a2), phân tử CO hấp phụ qua đầu O trên tâm hoạt động là nguyên tử Co (3b1 và 3b2), phân tử CO hấp phụ qua đầu C trên tâm hoạt động là nguyên tử Cu (3c1 và 3c2), phân tử CO hấp phụ qua đầu O trên tâm hoạt động là nguyên tử Cu (3d1 và 3d2), phân tử CO hấp phụ qua đầu C hướng tới hai nguyên tử Co-Cu (3e1 và 3e2) và phân tử CO hấp phụ qua đầu C trên 3 nguyên tử Co2Cu (3g1 và 3g2). Các cấu trúc tối ưu ứng với cấu trúc hấp phụ 3a1-3g1 và 3a2-3g2 được trình bày trên Hình 3. Các kết quả tính toán cho quá trình hấp phụ CO trên Co2Cu2/MgO bao gồm: năng lượng hấp phụ (Eads), độ dài liên kết C-O (dC-O) bậc liên kết C- O (BC-O) được tóm tắt trong Bảng 3. N.B. Long et al. / VNU Journal of Science: Natural Sciences and Technology, Vol. 36, No. 1 (2020) 81-89 87 (3a1) (3b1) (3c1) (3a2) (3b2) (3c2) (3d1) (3e1) (3g1) (3d2) (3e2) (3g2) Hình 3. Các cấu trúc hấp phụ CO trên Co2Cu2 và Co2Cu2/MgO. Bảng 3. Các thông số tính toán cho quá trình hấp phụ CO trên hệ Co2Cu2 và Co2Cu2/MgO Cấu trúc dC-O, Å Eads, kJ/mol B(C-O) 3a1 1,169 -200,2 2,447 3b1 1,153 -15,6 2,134 3c1 1,161 -196,8 2,498 3d1 1,161 -52,0 2,168 3e1 1,183 -180,9 2,350 3g1 1,190 -198,5 2,321 3a2 1,172 -231,2 2,124 3b2 1,153 -27,1 2,194 3c2 1,166 -180,9 2,316 3d2 1,161 -61,9 2,221 3e2 1,187 -214,3 2,314 3g2 1,205 -175,9 2,237 CO (g) 1,145 - 2,369 Năng lượng hấp phụ CO trên Co2Cu2/MgO nhìn chung thấp hơn các vị trí tương ứng trên hệ Co2Cu2, đặc biệt là ở các vị trí hấp phụ trên tâm Co ( các cấu trúc 3a2, 3b2 hoặc 3e). Khi hấp phụ trên các tâm Cu (cấu trúc 3c) hoặc có sự tham gia của tâm xúc tác Cu (cấu trúc 3g), năng lượng hấp phụ CO trên Co2Cu2/MgO cao hơn các vị trí tương ứng trên hệ Co2Cu2. Kết quả tính toán này tương đối phù hợp với kết quả tính toán quá trình hấp phụ và hoạt hóa CO2 trên hệ vật liệu cluster Cu/Al2O3 mà chúng tôi đã công bố [12]. Độ dài liên kết CO khi hấp phụ trên Co2Cu2 và trên Co2Cu2/MgO khác biệt không lớn (nhiều nhất 1,26%), bậc liên CO kết trên Co2Cu2/MgO nhìn chung nhỏ hơn trên Co2Cu2 (trừ trường hợp 3b2 và 3e2). N.B. Long et al. / VNU Journal of Science: Natural Sciences and Technology, Vol. 36, No. 1 (2020) 81-89 88 Tất cả các cấu trúc hấp phụ qua đầu C đều có giá trị Eads thấp hơn đầu O tương ứng, nghĩa là, khi CO hấp phụ trên Co2Cu2 và Co2Cu2/MgO thì sẽ ưu tiên hấp phụ qua đầu C. Kết quả này hoàn toàn phù hợp với các nghiên cứu đã được công bố trên thế giới về sự hấp phụ CO trên bề mặt các kim loại chuyển tiếp [7,11]. Điều này được giải thích là khi tương tác qua đầu C, có khả năng hình thành liên kết π*- ngược (π* back-bonding) giữa phân tử CO với các nguyên tử kim loại. Liên kết này hình thành do sự điền các electron của các nguyên tử kim loại vào các MO phản liên kết π* của CO dẫn đến sự suy yếu liên kết C O so với ban đầu, trong khi liên kết Co - C, Cu - C được tăng cường. Khi CO hấp phụ trên Co2Cu2/MgO qua đầu C, phân tử CO sẽ được hoạt hóa, có nghĩa là độ bền liên kết C-O giảm. Điều này thể hiện qua sự giảm bậc liên kết C-O khi hấp phụ trên Co2Cu2/MgO so với bậc liên kết C-O ở phân tử CO tự do (Bảng 3). Khi tiến hành xác định trạng thái chuyển tiếp có thể có của quá trình hấp phụ CO trên Co2Cu2/MgO bằng phương pháp CI-NEB (Bảng 4), nhận thấy năng lượng của quá trình hấp phụ CO trên Co2Cu2/MgO giảm dần từ cấu trúc đầu đến cấu trúc cuối, chứng tỏ quá trình hấp phụ này không đi qua trạng thái chuyển tiếp. Do đó, sự hấp phụ CO trên Co2Cu2/MgO chỉ phụ thuộc vào yếu tố nhiệt động, mà không bị chi phối bởi các yếu tố động học. Bảng 4. Năng lượng tương đối (Erel ) của các cấu trúc trên đường phản ứng của quá trình hấp phụ Co2Cu2/MgO (cấu trúc hấp phụ 3a2) Cấu trúc Erel*, kJ/mol Đầu 220,4 1 207,9 2 198,7 3 198,7 4 144,7 5 33,3 Cuối 0,0 * Coi E(cuối) = 0,0 kJ/mol. Như vậy, với việc quá trình hấp phụ CO trên Co2Cu2/MgO không qua trạng thái chuyển tiếp thì cấu trúc 3a2 là cấu trúc có Eads âm nhất, đây là cấu trúc hấp phụ ưu tiên nhất. Độ dài liên kết C-O sau khi hấp phụ tạo thành cấu trúc 3a2 dài hơn nhiều so với trước hấp phụ, trong khi bậc liên kết C-O giảm mạnh nhất cho thấy ở cấu trúc này CO được hoạt hóa mạnh. 3.2.2. Sự hấp phụ H2 trên hệ Co2Cu2/MgO Khi hấp phụ H2 trên Co2Cu2 và Co2Cu2/MgO có 2 cấu trúc hấp phụ chính: Hấp phụ phân li phân tử H2 trên nguyên tử Co (4a1 và 4a2) và hấp phụ phân li phân tử H2 trên nguyên tử Cu (4b1 và 4b2) (Hình 4). 4a1 4b1 4a2 4b2 Hình 4. Các cấu trúc hấp phụ H2 trên Co2Cu2/MgO. N.B. Long et al. / VNU Journal of Science: Natural Sciences and Technology, Vol. 36, No. 1 (2020) 81-89 89 Bảng 5. Các thông số tính toán cho quá trình hấp phụ H2 trên hệ Co2Cu2/MgO Cấu trúc Eads, kJ/mol Cấu trúc Eads, kJ/mol 4a1 -136,1 4a2 -167,7 4b1 -119,6 4b2 -157,8 Kết quả tính toán ở Bảng 5 cho thấy, khi đưa cluster Co2Cu2 lên chất mang MgO thì khả năng hấp phụ H2 tăng (Eads âm hơn). Các cấu trúc hấp phụ có năng lượng hấp phụ rất âm, khoảng cách giữa hai nguyên tử H trong các trường hợp đều lớn hơn nhiều so với khoảng cách trong phân tử H2 tự do (0,74 Å) cho thấy phân tử H2 bị phân ly hoàn toàn thành nguyên tử H, kết quả này phù hợp với nghiên cứu [13,14]. Kết quả tính CI- NEB cho thấy quá trình hấp phụ không đi qua trạng thái chuyển tiếp, do đó, cấu trúc hấp phụ 4a2 ứng với Eads âm hơn sẽ là cấu trúc hấp phụ ưu tiên H2 trên Co2Cu2/MgO. Như vậy, quá trình hấp phụ CO và H2 trên Co2Cu2/MgO đều không qua trạng thái chuyển tiếp, nên để so sánh khả năng hấp phụ ưu tiên khi hấp phụ đồng thời CO và H2 trên Co2Cu2/MgO, có thể sử dụng Eads. Năng lượng hấp phụ của cấu trúc hấp phụ ưu tiên CO (cấu trúc 3a2) âm hơn so với cấu trúc hấp phụ ưu tiên H2 (cấu trúc 4a2), do đó, khi CO và H2 hấp phụ đồng thời trên Co2Cu2/MgO, CO sẽ ưu tiên hấp phụ trước sau đó H2 mới hấp phụ phân li để xảy ra các phản ứng hóa học tiếp theo. 4. Kết luận Trong công trình này chúng tôi đã đã nghiên cứu quá trình hấp phụ khí CO và H2 trên bề mặt xúc tác Co2Cu2 và Co2Cu2/MgO bằng cách sử dụng phương pháp phiếm hàm mật độ (DFT) và phương pháp CI-NEB. Kết quả tính toán cho thấy, CO và H2 hấp phụ dễ dàng trên Co2Cu2 và Co2Cu2/MgO, quá trình hấp phụ mang bản chất hóa học và không đi qua trạng thái chuyển tiếp. Vị trí hấp phụ tối ưu nhất trên Co2Cu2/MgO với CO là khi phân tử CO hướng đầu C xuống nguyên tử Co, với H2 là tại vị trí Co. Ở các vị trí này, các liên kết C-O và H-H được hoạt hóa mạnh, tạo điều kiện thuận lợi cho các chuyển hóa tiếp theo. Tài liệu tham khảo [1] V.R. Surisettya, A. K. Dalai, J. Kozinski, Alcohols as alternative fuels: An overview, Appl. Catal. A 404 (2011) 1-11. [2] S. Zaman, K. Smith, A Review of Molybdenum Catalysts for Synthesis Gas Conversion to Alcohols: Catalysts, Mechanisms and Kinetics, J.catal. Rev-Sci. Eng 54 (2012) 41-132. [3] N. Zhao, R. Xu, W. Wei, Y. Sun, Cu/Mn/ ZrO2 catalyst for alcohol synthesis by Fischer- Tropsch modified elements, React. Kinet. Catal. Lett. 75 (2002) 297-304. [4] R. Xu, W. Wei, W. Li, T. Hu, Y. Sun, Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas: Effect of calcination temperature, J. Mol. Catal. A: Chem. 234 (2005) 75 - 83. [5] M.J.P. Zurita et al., Palladium-based catalysts for the synthesis of alcohols, J. Mol. Catal. A: Chem. 206 (2003) 339-351. [6] H.L. Jin, K.R. Hariprasad, S.J. Jae, Y. Eun- Hyeok, J.M. Dong, Role of support on higher alcohol synthesis from syngas, Appl. Catal. A. 480 (2014) 128 -133. [7] N.B. Long, N.T.T. Hà, L.M. Cầm, N.N. Hà, A theoretical study on the adsorption of CO and H2 over Ni-Cu bimetallic catalyst supported on MgO (200) by means of density functional theory, J. Chem., 56 (6E2) (2018) 189-193 (in vietnamese). [8] J.P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Let., 77(18) (1996) 3865-3868. [9] D.R. Hamann, M. Schlüter, C. Chiang, Norm- conserving pseudopotentials, Phys. Rev. Lett. 43 (1979) 1494 -1497. [10] J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys. Cond. Matt.14 (2002) 2745 - 2779. [11] M. He, A Computational Approach for the Rational Design of Bimetallic Clusters for Ethanol Formation from Syn-gas. All Dissertations. (2013), https:// tigerprints.clemson.edu/all_dissertations/1175. [12] N.T.T. Ha, V.T.M. Hue, B.C. Trinh, N.N. Ha, L.M. Cam, Study on the Adsorption and Activation Behaviours of Carbon Dioxide over Copper Cluster (Cu4) and Alumina-Supported Copper Catalyst (Cu4/Al2O3) by means of Density Functional Theory, J. Chem., vol. 2019, Article ID 4341056, 10 pages, https://doi.org/10.1155/2019/ 4341056 (in vietnamese). [13] Nordlander, S. Holloway, J.K. Nørskov, Hydrogen adsorption on metal surfaces, Surf. Sci. 136(1) (1984) 59-81. [14] F. Peter, K. Shampa, N.U. Anand, M. Manos, Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study, Surf. Sci., 606 (7-8) (2012) 679-689.
File đính kèm:
- a_theoretical_study_on_the_hydrogenation_of_co_over_co2cu2_b.pdf