Tổng hợp dữ liệu đa cảm biến và ứng dụng trong ước lượng vận tốc dài xe ô tô điện
Tóm tắt
Trong xe ô tô, cụ thể là ô tô điện có nhiều trạng thái cần phải được ước lượng do không thể đo được trực
tiếp các thông tin này. Vận tốc dài của xe là một trong những trạng thái cần phải ước lượng bởi nó phục vụ
cho nhiều bài toán điều khiển chuyển động cũng như điều khiển tự lái xe ô tô. Đối với ô tô điện, vận tốc dài
cần phải được ước lượng ở mức độ đủ nhanh để tận dụng được các ưu thế của động cơ điện. Bài báo đề
xuất thuật toán ước lượng vận tốc dài xe ô tô điện trên cơ sở của phương pháp tổng hợp cảm biến. Trong
đó, thuật toán chỉ sử dụng thông tin từ hệ thống cảm biến gắn trên xe ô tô mà không sử dụng thông tin động lực học của xe ô tô để ước lượng. Phương pháp đề xuất được thực nghiệm trên xe ô tô điện và có đánh giá kiểm chứng độ chính xác bằng cách so sánh với kết quả đo của một hệ thống thu thập dữ liệu thương mại. Các kết quả của bài báo có thể được ứng dụng cho các nghiên cứu về điều khiển cũng như ước lượng tham số khác của xe ô tô điện.
i đoạn của vận tốc. Các giá trị này được xác định bằng thực nghiệm. Sau khi đã phân biệt các giai đoạn khác nhau của vận tốc, sai lệch giữa phép đo từ các cảm biến và vận tốc thực của xe sẽ có thể được xác định theo từng giai đoạn này. Điều này đòi hỏi phải có hệ thống đo vận tốc chuẩn để làm tham chiếu. Quá trình này cũng chính là quá trình chỉnh định phép đo mà gần như bất kỳ hệ thống thu thập và xử lý dữ liệu nào cũng phải trải qua. 4. Hệ thông thực nghiệm kết quả 4.1. Mô tả hệ thống thực nghiệm Thuật toán tổng hợp cảm biến ước lượng vận tốc dài được thực hiện trên nền tảng xe ô tô điện i-MiEV của Mitsubishi. Phần cứng phục vụ triển khai thuật toán được lựa chọn là bộ điều khiển MyRIO 1900 do National Instruments sản xuất. Đây là bộ điều khiển vừa đủ mạnh với hai lõi xử lý gồm FPGA của Xilinx loại Z-7101 và ARM Cortex-A9 cùng các ngoại vi vào/ra, truyền thông cho phép kết nối với các loại cảm biến khác nhau cũng như kết nối với mạng CAN trên xe ô tô. Hệ thống tham chiếu để đánh giá kết quả ước lượng là hệ thống thu thập dữ liệu động học ô tô DAS-3 do Kistler sản xuất. Hệ thống sử dụng các cảm biến đo vận tốc dài loại quang học S350 và cảm biến tốc độ quay bánh xe với độ phân giải 1000 xung/vòng. Các hệ thống thí nghiệm và hệ thống tham chiếu được lắp đặt đồng thời trên xe ô tô như trên hình 2. Cấu hình thuật toán hệ thống ước lượng được trình bày trong hình 3. Các dữ liệu có tốc độ cập nhật thấp gồm vận tốc đo từ GPS, tốc độ quay của bánh xe được nâng tần số trích mẫu bằng bộ Modified Multirate Kalman Filter (M-MKF) [19], gia tốc của xe được lọc bằng bộ lọc Kalman. Các dữ liệu về vị trí chân ga, chân phanh được trích xuất từ mạng CAN trên xe ô tô, kết hợp với gia tốc của xe được sử dụng để tính toán các hệ số trọng số ik theo các phương trình (12), (13) và (14). Toàn bộ các thông tin này được đưa vào bộ ước lượng theo quy tắc (15), (16) và (17). 4.2. Quy trình thử nghiệm Quá trình thử nghiệm đánh giá độ chính xác của thuật toán ước lượng được tiến hành trong hai trường hợp điển hình gồm (1) di chuyển trên đường bình thường với độ bám đường cao và (2) di chuyển trên đường có vùng độ bám thấp. Trong cả hai trường hợp này, xe đều được gia tốc tới vận tốc nhất định rồi giảm tốc nhanh. Đối với trường hợp thứ hai, trong quá trình tăng tốc, xe được di chuyển vào mặt đường trơn với chiều dài khoảng 2m (tương đương kích thước của một vũng dầu) rồi lại quay lại đường bình thường. Để đảm bảo yêu cầu về tốc độ ước lượng, cả hệ thống thí nghiệm lẫn hệ thống tham chiếu đều được thực hiện trích mẫu ở tần số 500Hz (tức là gấp 5 lần tần số yêu cầu tối thiểu). Điều đó có nghĩa là bộ M- MKF áp dụng cho đối tượng vận tốc bánh xe và GPS cần phải được thực hiện cũng ở tần số này. Hình 3. Cấu hình hệ thống ước lượng vận tốc dài a) Cảm biến bên ngoài b) Các bộ thu thập dữ liệu Hình 2. Hệ thống thực nghiệm trên xe ô tô i-MiEV Tạp chí Khoa học và Công nghệ 132 (2019) 033-039 38 4.3. Kết quả Hình 4 và hình 5 tương ứng là các kết quả thực nghiệm trong cả hai trường hợp đường bình thường và đường có khu vực độ bám thấp. Hình 4a và hình 4b mô tả khả năng của bộ M- MKF nhằm nâng cao tốc độ trích mẫu của cảm biến. Cảm biến đo vận tốc bánh xe có độ phân giải 36 xung/vòng cho tín hiệu nhảy bậc và có kèm nhiễu (hình 4a). Với bộ M-MKF, tín hiệu này được nâng cấp và cho kết quả bám rất sát với tín hiệu đo về từ hệ thống tham chiếu 1000 xung/vòng. Kết quả tương tự cũng được thể hiện trên hình 4b cho GPS. Tuy nhiên, do GPS không có hệ thống tham chiếu tương đương nên kết quả chỉ thể hiện sự thay đổi về tần số trích mẫu với đặc tính mịn hơn rất nhiều so với tín hiệu GPS gốc. Tương tự, hình 5a cho kết quả tốc độ bánh xe với sự so sánh giữa kết quả của bộ M-MKF và hệ thống tham chiếu. Khi xe đi vào vùng có độ bám đường thấp, bánh xe bị trượt trên đường làm tốc độ bánh xe tăng mạnh lên tới 14m/s (so với 8m/s khi xe vẫn còn đi trên đường tốt). Do độ dài đoạn đường trơn chỉ khoảng 2m nên quá trình trượt diễn ra trong thời gian ngắn (khoảng 0.4s). Do đó, khi ra khỏi vùng đường này, tốc độ bánh xe giảm xuống đột ngột. Điều này gây ra một sự dao động nhỏ ở tốc độ bánh xe. Mặc dù vậy, tín hiệu ở đầu ra của bộ M-MKF đều bám rất sát tín hiệu tham chiếu trong toàn bộ quá trình thử nghiệm. Khi các tín hiệu thành phần gồm vận tốc bánh xe, GPS và gia tốc đã được chuẩn hóa và đồng bộ về tốc độ trích mẫu, thuật toán tổng hợp dữ liệu được thực hiện và cho kết quả rất tốt. Điều này thể hiện ở các hình 4c và 5b. Có thể thấy tốc độ ước lượng được bám rất sát với tín hiệu tốc độ đo từ hệ thống tham chiếu DAS-3. Thậm chí cả trong trường hợp hình 5b, tại đoạn đường trơn, tốc độ xe không bị ảnh hưởng bởi sự biến động đột biến của tốc độ bánh xe. Một điều cũng dễ nhận thấy là tín hiệu ước lượng không bị nhiễu như tín hiệu đo từ hệ thống tham chiếu. Điều này một lần nữa khẳng định khả năng của phép ước lượng trên cơ sở của phương pháp tổng hợp cảm biến. 5. Kết luận Bài báo đã trình bày phương pháp ước lượng tối ưu tốc độ dài của xe ô tô điện từ dữ liệu của các cảm biến chuyển động dựa trên phương pháp tổng hợp dữ liệu đa cảm biến. Các cảm biến này có các đặc tính về tốc độ trích mẫu khác nhau nhưng đều được đồng bộ a) Tín hiệu Encoder b) So sánh vận tốc dài Hình 5. Thử nghiệm đường có vùng độ bám thấp a) Tín hiệu Encoder b) Tín hiệu GPS c) Vận tốc đo và vận tốc ước lượng Hình 4. Kết quả thử nghiệm đường bình thường Tạp chí Khoa học và Công nghệ 132 (2019) 033-039 39 hóa bằng bộ lọc Kalman đặc biệt M-MKF. Trên cơ sở đó, kết hợp với thuật toán tổng hợp, tốc độ dài của xe ô tô điện đã được ước lượng chính xác ở tốc độ 500Hz, cao hơn so với yêu cầu cơ bản của xe ô tô điện (100Hz). Các đặc tính thực nghiệm được kiểm chứng trên xe ô tô điện i-MiEV và có so sánh với hệ thống thu thập dữ liệu tham chiếu DAS-3 đã cho thấy sự hiệu quả của phương pháp đề xuất. Kết quả của thuật toán ước lượng vận tốc dài này sẽ là cơ sở tốt cho các bài toán điều khiển chuyển động như điều khiển chống trượt, điều khiển hành trình; hay bài toán điều khiển xe tự lái ở các cấp độ khác nhau. Tài liệu tham khảo [1] Kistler Group, DAS-3 - Data Acquisition and Evaluation. Kistler - measure, analyze, innovate, 2016. [2] Vbox Automotive, “Slip Angle Explained - How to measure vehicle body slip angle using Vbox equipment,” www.vboxautomotive.co.uk, 2015. [3] G. Panzani, M. Corno, and S. M. Savaresi, “Longitudinal velocity estimation in single-track vehicles,” in 16th IFAC Symposium on System Identification, vol. 16, pp. 1701–1706, IFAC, 2012. [4] T. Singhal, A. Harit, and D. Vishwakarma, “Kalman Filter Implementationon an Accelerometer sensor data for three state estimation of a dynamic system,” International Journal of Research in Engineering and Technology (IJRET), vol. 1, no. 6, pp. 330–334, 2012. [5] L.-j. Wu, “Experimental study on vehicle speed estimation using accelerometer and wheel speed measurements,” in 2011 Second International Conference on Mechanic Automation and Control Engineering, no. 1, pp. 294–297, 2011. [6] Y. Gai, Q. Guo, and H. Liu, “The state estimation for electric stability program using Kalman filtering,” The IEEE International Conference on Automation and Logistics, pp. 1478–1482, 2007. [7] H. Guo, H. Chen, F. Xu, F. Wang, and G. Lu, “Implementation of EKF for vehicle velocities estimation on FPGA,” IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3823–3835, 2013. [8] X. Y. Zong and W. W. Deng, “Study on velocity estimation for four-wheel independent drive electric vehicle by UKF,” 2013 5th Conference on Measuring Technology and Mechatronics Automation, CMTMA 2013, pp. 1111–1114, 2013. [9] L. Chu, Y. Zhang, Y. Shi, M. Xu, and M. Liu, “Vehicle lateral and longitudinal velocity estimation based on Unscented Kalman Filter,” in ICETC 2010 – 2010 2nd International Conference on Education Technology and Computer, vol. 3, pp. 427–432, 2010. [10] L. H. Zhao, Z. Y. Liu, and H. Chen, “Design of a nonlinear observer for vehicle velocity estimation and experiments,” IEEE Transactions on Control Systems Technology, vol. 19, no. 3, pp. 664–672, 2011. [11] L. Imsland, T. A. Johansen, T. I. Fossen, H. Fjær Grip, J. C. Kalkkuhl, and A. Suissa, “Vehicle velocity estimation using nonlinear observers,” Automatica, vol. 42, no. 12, pp. 2091–2103, 2006. [12] L. Imsland, T. a. Johansen, T. I. Fossen, H. F. Grip, J. C. Kalkkuhl, and A. Suissa, “Vehicle velocity estimation using modular nonlinear observers,” Automatica, vol. 42, no. 1, pp. 2091–2103, 2006. [13] L. H. Zhao, Z. Y. Liu, and H. Chen, “Sliding mode observer for vehicle velocity estimation with road grade and bank angles adaptation,” in IEEE Intelligent Vehicles Symposium, Proceedings, vol. 2, pp. 701–706, 2009. [14] B. Jaballah, N. M’Sirdi, A. Naamane, and H. Messaoud, “Estimation of longitudinal and lateral velocity of vehicle,” in 2009 17th Mediterranean Conference on Control and Automation, pp. 582–587, 2009. [15] Kiencke U, Nielsen L, “Automotive control systems: for engine, driveline, and vehicle”, 2nd Ed., Springer, 2010. [16] Qi Z, Zhang J, “Study on reference vehicle velocity determination for ABS based on vehicle ABS/ASR/ACC integrated systems”, J Automot Eng, vol.25, no.6, pp.617-620, 2003. [17] Jitendra R. Raol, Multi-Sensor Data Fusion with MATLAB. CRC Press, 2010. [18] H. Durrant-whyte and T. C. Henderson, “Multisensor Data Fusion,” Springer Handbook of Robotics, pp. 585–610, 2008. [19] T. Vo-duy and M. C. Ta, “Modified Multirate Kalman Filter for Improving the Sampling Frequency of Single Low Speed Sensor,” in Proc. of 2017 IEEE Vehicle Power and Propulsion Conference, VPPC- 2017, pp. 1-6, 2017.
File đính kèm:
- tong_hop_du_lieu_da_cam_bien_va_ung_dung_trong_uoc_luong_van.pdf