Tối ưu hóa khung xe buýt B45 nhằm giảm rung động ghế hành khách
Tóm tắt - Vấn đề rung động và tiếng ồn trên xe buýt là tiêu chí quan
trọng cần cải thiện nhằm đảm bảo sự thoải mái và an toàn cho hành
khách. Trong kết cấu xe buýt, khung xương xe là bộ phận truyền rung
động từ nguồn kích thích như động cơ, mặt đường đến vị trí ghế
hành khách. Tối ưu hóa độ cứng khung xương xe là giải pháp hiệu
quả nhằm giảm rung động trên xe tạo sự thoải mái cho hành khách.
Bài báo đề xuất mô hình mô phỏng rung động kết cấu khung xe buýt
B45, sử dụng phần mềm Hyperworks. Trên cơ sở phân tích kết quả
tính toán rung động, tác giả lựa chọn kết cấu khung xe tối ưu, thay đổi
độ cứng khung xương xe, giảm thiểu rung động ghế hành khách, đáp
ứng mức cao nhất về sự thoải mái theo tiêu chuẩn ISO Human Body
Vibration (ISO 2631-1). Kết quả rung động trước và sau khi tối ưu kết
cấu khung xe được kiểm chứng bằng đo đạc thực nghiệm về rung
động tại các vị trí khác nhau trên ghế hành khách.
đuôi bố trí gần nguồn rung động và chịu ảnh hưởng của khối lượng các chi tiết đặt vào, mặt khác vị trí sàn băng ghế 5 và tôn mảng mui có mức độ rung động lớn là do kết cấu liên kết chưa phù hợp, độ cứng thấp gây ra rung động cao. Kết quả tính toán cho thấy rung động có ảnh hưởng trực tiếp đến người ngồi (sàn băng ghế 5), nên để đánh giá mức độ tác động của rung động xe buýt đến người ngồi như đã đề cập ở Bảng 1, ta phải so sánh kết quả tính toán giá trị gia tốc theo tần số rung động với tiêu chuẩn về mức độ thoải mái. Giá trị gia tốc rung động theo các phương X, Y và Z nằm trong khoảng 0,5÷1,0 m/s2, mức độ cảm giác rõ rệt không thoải mái tại các vị trí sàn hành khách. Các vị trí này được liên kết với khung mảng hông trái, phải và chassis đuôi, nơi bắt các pát chân máy động cơ, nguồn rung động. Do vậy, cần hiệu chỉnh kết cấu khung xương, tối ưu hóa các mảng chịu rung động để tăng độ cứng cho khung xe buýt, đưa giá trị vận tốc, gia tốc rung động về ngưỡng “rất thoải mái” đối với hành khách. Hình 6. Kết quả vận tốc rung động [m/s] tại tần số rung động f = 25 [Hz] theo phương X 4. Kết quả tối ưu hóa kết cấu nhằm giảm rung động ghế hành khách Tối ưu hóa kết cấu khung xe, nhằm đảm bảo mức độ rung động, tăng độ thoải ở vị trí người ngồi, được thực hiện bằng cách thay đổi kết cấu, đặc tính vật liệu, quy cách thép hộp của các mảng khung xương: Thay đổi kích thước, chiều dày các thép hộp tại vị trí gần nguồn rung động như khung xương mảng đuôi, mảng hông trái và mảng hông phải nơi có biên độ rung lớn nhất, nhằm tăng độ cứng khung xương; Thay đổi hình dạng kết cấu khung xương để tăng khả năng chống rung động tại các vị trí căng tôn mui, dãy ghế hành khách Kết quả tính toán tối ưu kết cấu khung xương được đánh giá qua biên độ vận tốc rung động tại các phần tử của mô hình khung xe và vị trí nguồn kích thích. Kết quả tính toán rung động tại các vị trí khác nhau trên khung xe trước và sau khi tối ưu hóa kết cấu được thể hiện trên Bảng 4. Bảng 2. Kết quả vận tốc rung động lớn nhất ban đầu trên khung xe theo ba phương X, Y, Z tại các tần số khác nhau Vị trí đo đạc Node id f=25 Hz f=50 Hz X Y Z X Y Z Chân máy bên phụ phía trước 2788823 2,35017 6,05450 4,23 0,29176 0,27907 0,356 Chân máy bên phụ phía sau 2788818 2,73412 13,97112 9,81 0,24889 0,67635 0,823 Chân máy bên tài phía trước 2788824 2,82426 6,46898 6,01 0,46238 0,98804 1,97 Chân máy bên tài phía sau 2788818 2,31353 14,34701 10,10 0,40979 1,53095 1,70 Xương mảng hông bên trái 2018368 9,73844 24,67003 16,5738 12,7715 4,63245 2,79077 Xương mảng đuôi 22169 4,38271 14,9067 9,58005 16,9162 20,2715 15,5547 Kết quả tính toán (Bảng 4) cho thấy mức độ rung động ở tần số 25Hz và 50Hz sau khi tối ưu hóa kết cấu đều giảm từ 12÷56% so với giá trị ban đầu. Vị trí tập trung mức độ rung thay đổi. Phương X: Giá trị biên độ vận tốc lớn nhất vẫn tập trung tại vị trí khung xương mảng hông trái và mảng đuôi. Phương Y: Giá trị biên độ vận tốc lớn nhất chỉ tập trung tại mảng hông phải. Phương Z: Giá trị biên độ vận tốc lớn nhất vẫn tập trung tại mảng đuôi và mảng hông trái. Tại vị trí tôn mảng mui, giá trị này giảm xuống do được gia cố bằng các V50x50x2.0mm liên kết. Giá trị gia tốc trên mảng sàn có thay đổi sau khi tối ưu hóa kết cấu, giá trị của gia tốc 0,41339 [m/s2] ứng với tần 86 Nguyễn Minh Thiện, Lê Cung số 25Hz và 0,39142 [m/s2] ứng với tần số 50Hz nằm trong khoảng 0,315÷0,63 m/s2, nhỏ hơn so với giá trị ban đầu (từ 0,5÷1,0m/s2), so với tiêu chuẩn đánh giá tạo cảm giác thoải mái hơn cho hành khách. Cụ thể, theo các phương X: Giá trị gia tốc giảm từ 71,68÷91,66% so với giá trị ban đầu, vị trí có giá trị lớn thay đổi từ xương lắp ghế ngồi hành khách đến xương nắp thăm khoang động cơ (tần số 25Hz), từ xương nắp thăm động cơ đến các xương liên kết mảng hông và mảng đuôi (tần số 50Hz). Phương Y: Giá trị gia tốc giảm từ 43,88÷91,51% so với giá trị ban đầu. Ở tần số 25Hz, vị trí có giá trị lớn không thay đổi, nhưng ở tần số 50Hz, giá trị lớn nhất tại nơi liên kết khung xương mảng hông trái. Phương Z: Giá trị gia tốc giảm từ 27,86÷33,54% so với giá trị ban đầu, nhưng vị trí có giá trị lớn vẫn không thay đổi. Bảng 3. Kết quả gia tốc rung động lớn nhất trên khung xe theo ba phương X, Y, Z tại các tần số khác nhau Vị trí đo đạc Node id f=25 Hz f=50 Hz X Y Z X Y Z Xương mảng hông trái 2018368 1,52971 * * 5,31438 * * Xương mảng hông trái 1722768 * 3,87516 * * 1,45533 * Xương mảng hông phải 2025109 * 2,34154 * * 6,36847 * Xương mảng đuôi 22169 0,68844 * * 4,01227 * * 276290 * * 1,50483 * * 4,88666 Sàn vị trí người lái 923652 0,07241 * * 0,04239 * * 9044 0,07159 * * 0,05485 * * 2273899 * 0,13235 * * 0,09502 * 2270188 * 0,11915 * * 0,121 * 22840 * * 0,26472 * * 0,0951 1496757 * * 0,18073 * * 0,18162 Sàn vị trí hành khách 230022 1,0146 * * 0,31864 * * 797401 0,58345 * * 1,53525 * * 345086 * 0,83858 * * 0,26207 * 229958 * 0,26258 * * 0,91561 * 2655283 * * 2,13989 * * 0,57356 1728199 * * 0,57356 * * 0,94635 Tôn mui xe 1216698 * * 2,6034 * * 0,87675 Băng ghế 5 hành khách ** 0,37462 0,12107 0,54576 0,57540 0,32717 0,58298 (*): Giá trị gia tốc rung động nhỏ không xét đến. (**): Tập hợp các ID NODE trên băng ghế 5. Bảng 4. So sánh kết quả vận tốc, gia tốc trước và sau khi tối ưu hóa kết cấu f [Hz] Phương Vận tốc lớn nhất [mm/s] Chênh lệch (%) Gia tốc lớn nhất tại sàn [m/s2] Chênh lệch (%) Ban đầu Sau tối ưu Ban đầu Sau tối ưu 25 X 9,73844 8,13832 -16,43 0,37462 0,10608 -71.68 Y 24,67003 21,52958 -12,73 0,12107 0,06795 -43.88 Z 16,57375 12,23132 -26,2 0,54576 0,39373 -27.86 a * * * 0,67294 0,41339 -38,57 50 X 16,91621 10,65345 -37,02 0,57540 0,04801 -91.66 Y 20,27148 8,81897 -56,50 0,32717 0,02777 -91.51 Z 15,55471 6,85630 -55,92 0,58298 0,38747 -33.54 a * * * 0,88204 0,39142 -55,62 ISSN 1859-1531 - TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ ĐẠI HỌC ĐÀ NẴNG, SỐ 11(132).2018, QUYỂN 1 87 5. Kiểm chứng thực nghiệm rung động khung xe Hình 7. Đo rung động tại vị trí ghế hành khách: 1) Chân; 2) Mông; 3) Lưng; 4) Bộ scandas 16 kênh Nhằm kiểm tra mức độ giảm thiểu rung động trên khung xe trước và sau khi tối ưu hóa kết cấu, nhóm tác giả tiến hành đo đạc thực nghiệm bằng thiết bị đo rung động, tiếng ồn và va chạm LMS Test Lab của Hãng LMS, Siemens Group, Bỉ. Sử dụng các cảm biến 3 phương (Seatpad) 1, 2, 3 tại 3 vị trí chân, mông, lưng hành khách, để đo lại giá trị gia tốc tác dụng lên cơ thể con người khi động cơ nổ ở chế độ không tải (chế độ có mức độ rung động từ động cơ lớn nhất). Bộ scandas 16 kênh sẽ nhận tín hiệu chuyển vào phần mềm sử dụng công cụ phân tích giá trị gia tốc rung động hiệu dụng RMS, thực hiện đo giá trị rung động trong khoảng thời gian 0÷30s. Bảng 5. So sánh kết quả giá trị gia tốc rung động hiệu dụng trước và sau tối ưu hóa kết cấu. Phương Giá trị gia tốc rung động [m/s2] Chênh lệch (%) Ban đầu Sau tối ưu X 0,093 0,072 -22,58 Y 0,218 0,062 -71,56 Z 0,279 0,196 -29,75 a 0,354 0,211 -40,39 Kết quả đo đạc thực tế trước khi tối ưu ta có giá trị gia tốc rung động hiệu dụng là 0,354 [m/s2] so sánh với tiêu chuẩn ISO 2631-1 (Bảng 1) gây cảm giác một ít không thoải mái cho hành khách và sau khi tối ưu kết cấu cho giá trị gia tốc rung động hiệu dụng là 0,211 [m/s2] cho cảm giác rất thoải mái, mức độ thoải mái cho hành khách được cải thiện đáng kể. Các thông số cụ thể theo các phương thể hiện trên Bảng 5, rung động theo phương Y giảm nhiều nhất (71,56%) và phương Z giảm 29,75% tương ứng với việc thêm xương thép hộp □40x40x3.0mm theo phương Y và tăng độ dày các xương mảng đuôi lên □40x40x2.0mm theo phương Z. 6. Kết luận Trên cơ sở phân tích kết quả tính toán rung động, tác giả lựa chọn kết cấu khung xe tối ưu, nhờ đó thay đổi độ cứng khung xương xe, nhằm giảm thiểu rung động ghế hành khách, đáp ứng mức cao nhất về sự thoải mái theo tiêu chuẩn ISO 2631-1:1997 với các kích thích chủ yếu là rung động do động cơ gây ra. Việc tối ưu hóa kết cấu khung xe làm giá trị biên độ vận tốc theo ba phương giảm xuống rất nhiều (khoảng 56%). Gia tốc rung động của khung xương theo phương Z sau khi tối ưu hóa kết cấu giảm xuống còn 0,196m/s2, giảm hơn 29,43% so với giá trị ban đầu, đảm bảo độ thoải mái theo tiêu chuẩn ISO 2631-1. Kết quả nghiên cứu dự kiến sẽ áp dụng nhằm giảm thiểu rung động trên ghế hành khách của xe buýt B45, Công ty THHH MTV Thaco Trường Hải. TÀI LIỆU THAM KHẢO [1] Dieter Schramm, Manfred Hiller, Roberto Bardini, Vehicle Dynamics: Modeling and Simulation. UK: Springer, 2014. [2] Jun Yang, Mingming Dong, Research on Vibration of Automobile Suspension Design, MATEC Web of Conferences (ICMME 2017). [3] Li-Xin Guo, Li-Ping Zhang: Vehicle Vibration Analysis in Changeable Speeds Solved by Pseudoexcitation Method, Mathematical Problems in Engineering, 2010. [4] Reza N. Jazar, Vehicle Dynamics: Theory and Application Switzerland: Springer International Publishing, 2014. [5] Tiêu chuẩn quốc gia TCVN 6964-1: 2001 (ISO 2631-1:1997), Rung động và chấn động cơ học giá sự chịu đựng của con người với rung động toàn thân. [6] Trương Hoàng Tuấn, Trần Hữu Nhân, Trần Quang Lâm Phân tích dao động của thân xe tải nhẹ bằng mô hình động lực học dao động 3D, Tạp chí Phát triển KHCN, Tập 18 số K7-2015. [7] Yogendra S.Rajput, Vikas Sharma, Shivam Sharma, “Gaurav Saxena: A Vibration Analysis of Vehicle Frame”, International Journal of Engineering Research and Application (IJERA), Vol. 3, Issue 2, 2013, pp. 348-350 348. [8] W.Gao, N.Zhang, H.P.Du, “A half-car model for dynamic analysis of vehicle with random parameters”, The 5th Australasian Congress on Applied Mechanics, ACAM 2007. [9] Altair Engineering, OptiStruct for Linear Dynamics: Modal, FRF, and Transient Analysis. American, 1985. (BBT nhận bài: 14/9/2018, hoàn tất thủ tục phản biện: 02/10/2018)
File đính kèm:
- toi_uu_hoa_khung_xe_buyt_b45_nham_giam_rung_dong_ghe_hanh_kh.pdf