Thiết kế nguyên tắc hệ thống dẫn chùm positron chậm bằng chương trình mô phỏng Simion
TÓM TẮT
Hệ thống dẫn chùm positron chậm là một thiết bị quan trọng trong nghiên cứu vật lí và kĩ
thuật positron, đặc biệt được ứng dụng trong nghiên cứu vật liệu. Bài báo trình bày các kết quả
nghiên cứu và áp dụng chương trình mô phỏng quỹ đạo hạt mang điện Simion để xây dựng các mô
hình thiết kế khả thi cho hệ thống. Một số tính toán mô phỏng thử nghiệm quỹ đạo chuyển động của
chùm hạt positron đã được tiến hành nhằm mục đích so sánh giữa các mô hình. Từ đó, một mô
hình thiết kế nguyên tắc đã được đề xuất để làm cơ sở cho việc xây dựng hệ thống dẫn chùm
positron chậm thực tế có thể được thực hiện trong tương lai ở Việt Nam
ụ và độ đơn năng của chùm hạt positron thu được tại bia mẫu của các mô hình. TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Bùi Xuân Huy và tgk 171 - Khảo sát tính toán quỹ đạo bay của chùm hạt positron đơn năng trong trường hợp một cuộn solenoid bị lệch khỏi vị trí tối ưu ban đầu. Khảo sát này được thực hiện với mục đích đánh giá độ nhạy của chất lượng chùm hạt positron thu được tại bia mẫu khi phát sinh tình huống lắp đặt sai vị trí của một cuộn dây solenoid, dẫn đến sai lệch từ trường tối ưu dọc theo trục của các mô hình. Nhóm nghiên cứu đã đánh giá, so sánh các kết quả tính toán mô phỏng và đưa ra lựa chọn thiết kế được xem là tối ưu nhất trong số các mô hình. Mô hình tối ưu này được đề xuất làm mô hình thiết kế nguyên tắc cho hệ thống dẫn chùm positron chậm có thể được xây dựng trong tương lai. Bản thông số thiết kế cuối cùng của mô hình sẽ bao gồm các thông số về dạng hình học của hệ thống, thông số thiết kế của các cuộn dây điện tạo từ trường và thông số về điện áp của mô hình tối ưu được lựa chọn. 3. Kết quả và thảo luận Trường hợp 1. Khảo sát mô phỏng với chùm hạt positron đơn năng Chương trình Simion được sử dụng để mô phỏng quỹ đạo bay của chùm hạt bao gồm 1000 hạt positron đơn năng, có động năng ban đầu 3 eV phát đẳng hướng từ cửa sổ nguồn giả định cho từng mô hình thiết kế. Giá trị cao thế được cung cấp cho bộ phận tiền gia tốc và bộ phận gia tốc cho cả ba mô hình một cách tương ứng là 27 V và 30 kV. Các kết quả thống kê của chùm hạt positron thu được tại bia mẫu cho mỗi mô hình được trình bày trên Bảng 1. Các kết quả biểu diễn phân bố chùm hạt và phân bố năng lượng của chùm hạt tại bia mẫu cho mỗi mô hình được mô tả trên Hình 4 và Hình 5 dưới đây. Bảng 1. Kết quả thống kê tại bia mẫu trong trường hợp khảo sát với chùm hạt positron đơn năng Mô hình dạng thẳng Mô hình dạng cong với góc cong 500 Mô hình dạng cong với góc cong 900 Tổng số positron phát ra từ nguồn 1000 1000 1000 Tổng số positron đến được bia mẫu 789 807 795 Tỉ lệ positron đến được bia mẫu 78,9% 80,7% 79,5% Bán kính tiết diện chùm positron tại bia mẫu 2,75 mm 2,39 mm 2,79 mm TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tập 15, Số 12 (2018): 167-175 172 Hình 4. Phân bố của chùm hạt tại bề mặt bia mẫu cho mô hình thiết kế theo dạng thẳng (a), thiết kế theo dạng cong với góc cong 500 (b) và góc cong 900(c) cho trường hợp khảo sát chùm hạt positron đơn năng Hình 5. Phân bố năng lượng của chùm hạt tại bề mặt bia mẫu cho mô hình thiết kế theo dạng thẳng (a), thiết kế theo dạng cong với góc cong 500 (b) và góc cong 900 (c) cho trường hợp khảo sát chùm hạt positron đơn năng Từ các kết quả khảo sát cho trường hợp 1, có thể thấy được chùm hạt positron thu được trong trường hợp sử dụng mô hình với góc cong 50o có bán kính tiết diện chùm hạt phân bố trên bề mặt bia mẫu là nhỏ nhất, do đó có độ hội tụ tốt hơn so với hai mô hình còn lại. Ngoài ra, phổ phân bố năng lượng của chùm hạt positron thu được cho cả ba mô hình thiết kế có đỉnh phổ nằm xung quanh mức năng lượng 30030 eV. Kết quả này phù hợp với đỉnh năng lượng đã được dự đoán sẽ thu được khi khảo sát chùm hạt positron đơn năng 3 eV được tiền gia tốc với điện áp 27 V và được gia tốc với cao thế 30 kV. Bên cạnh đó, kết quả đánh giá phổ phân bố năng lượng còn cho thấy độ rộng bán cực đại của phổ đối với mô hình thiết kế với góc cong 50o (FWHM = 1,34 eV) là nhỏ hơn so với kết quả tính toán cho mô hình thiết kế theo dạng thẳng (FWHM = 5,50 eV) và mô hình thiết kế với góc cong 90o (FWHM = 5,71 eV). Kết quả này cho thấy chùm hạt positron thu được tại bia mẫu đối với mô hình thiết kế với góc cong 50o là tương đối đơn năng hơn so với hai mô hình còn lại. (a) (c) x y (b) x y x y (a) (b) (c) TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Bùi Xuân Huy và tgk 173 Trường hợp 2. Khảo sát mô phỏng với chùm hạt positron đơn năng trong trường hợp một cuộn solenoid bị lệch khỏi vị trí tối ưu ban đầu Quỹ đạo bay của chùm hạt đơn năng được mô phỏng với các thông số đầu giống trường hợp 1 đã được khảo sát trong trường hợp cuộn solenoid bao quanh bộ phận gia tốc của mỗi mô hình thiết kế được giả định bị lệch khỏi vị trí tối ưu ban đầu với các độ lệch 1 cm và 2 cm. Các kết quả so sánh phân bố của chùm hạt positron thu được tại bia mẫu cho các mô hình thiết kế được mô tả tương ứng trên các Hình 6, Hình 7 và Hình 8 dưới đây. Hình 6. Phân bố của chùm hạt tại bề mặt bia mẫu cho mô hình thiết kế theo dạng thẳng khi không làm lệch cuộn solenoid (a) và làm lệch cuộn solenoid 1 cm (b) và 2 cm (c). Hình 7. Phân bố của chùm hạt tại bề mặt bia mẫu cho mô hình thiết kế theo dạng cong 50o khi không làm lệch cuộn solenoid (a) và làm lệch cuộn solenoid 1 cm (b) và 2 cm (c). Hình 8. Phân bố của chùm hạt tại bề mặt bia mẫu cho mô hình thiết kế theo dạng cong 90o khi không làm lệch cuộn solenoid (a) và làm lệch cuộn solenoid 1 cm (b) và 2 cm (c) TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tập 15, Số 12 (2018): 167-175 174 Từ các kết quả khảo sát cho trường hợp 2, có thể thấy được với mô hình thiết kế theo dạng thẳng sử dụng bộ lọc ExB, độ lệch của cuộn solenoid bao quanh bộ phận gia tốc ảnh hưởng rất nhiều đến tỉ lệ các hạt positron đến được bia mẫu. Với trường hợp cuộn solenoid bị lệch 1 cm, sự sai lệch của từ trường làm cho các positron chậm sau khi ra khỏi bộ lọc ExB gần như bị chặn hoàn toàn bởi khối collimator và làm cho số hạt đến được bia mẫu rất ít. Trong trường hợp cuộn solenoid bị lệch 2 cm, thậm chí không có hạt positron nào đến được bia mẫu. Đối với hai mô hình thiết kế theo dạng cong, kết quả so sánh cho thấy chùm hạt positron thu được tại bia mẫu với mô hình thiết kế theo dạng cong với góc cong 90o bị sai lệch nhiều hơn so với việc sử dụng mô hình với góc cong 50o, thậm chí chùm hạt positron thu được còn bị thay đổi hình dạng trong trường hợp cuộn solenoid giả định bị lệch 2 cm như mô tả trên Hình 7. Các kết quả so sánh trên cho thấy chất lượng của chùm hạt positron thu được với mô hình thiết kế theo dạng cong với góc cong 50o sẽ ít nhạy với sai số gây ra bởi của sự lệch vị trí cuộn solenoid so với việc sử dụng hai mô hình còn lại. 4. Kết luận Thông qua việc thực hiện nghiên cứu này, nhóm nghiên cứu đã nắm được nguyên lí chung cũng như các thành phần chính của một hệ thống dẫn chùm positron chậm; đồng thời, sử dụng chương trình mô phỏng Simion để xây dựng thành công các mô hình thiết kế khả thi cho một hệ thống dẫn chùm positron chậm. Từ việc xem xét tính khả thi của các mô hình thiết kế và đánh giá các kết quả tính toán mô phỏng thử nghiệm dẫn đến kết luận rằng mô hình thiết kế theo dạng cong với góc cong 50o tối ưu hơn so với hai mô hình còn lại. Đây sẽ là mô hình được đề xuất làm thiết kế nguyên tắc và làm cơ sở cho việc thiết kế chi tiết kĩ thuật các thành phần thiết yếu của hệ thống dẫn chùm positron chậm có thể được xây dựng trong tương lai. Với mô hình thiết kế nguyên tắc đã được lựa chọn, các thông số của mô hình có thể được thay đổi và hoàn thiện một cách linh động qua đó có thể tối ưu hóa hơn nữa các thông số kĩ thuật một cách khả thi và hợp lí nhất trước khi tiến tới việc thiết kế, xây dựng hệ thống thực tế. Tuyên bố về quyền lợi: Các tác giả xác nhận hoàn toàn không có xung đột về quyền lợi. TÀI LIỆU THAM KHẢO [1] P. K. Pujari, K. Sudarshan and D. Dutta, “11th International Workshop on Positron and Positronium Chemistry (PPC-11),” J. Phys. Conf. Ser., 618, p. 11001, 2015. [2] P. G. Coleman, Positron Beams and Their Applications. World Scientific, 2000. [3] L. A. Tuyen, Z. Kajcsos, K. Lázár, T. D. Tap, D. D. Khiem and P. T. Phuc, “Positron annihilation characteristics in multi-wall carbon nanotubes with different average diameters,” J. Phys. Conf. Ser., 443(1), 2013. TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Bùi Xuân Huy và tgk 175 [4] A. T. Luu et al., “Multi-wall carbon nanotubes investigated by positron annihilation techniques and microscopies for further production handling,” Phys. Status Solidi Curr. Top. Solid State Phys., 6(11), pp. 2578-2581, 2009. [5] N. D. Thanh, T. Q. Dung, L. A. Tuyen and K. T. Tuan, “Semi-empirical formula for large pore-size estimation from the o-Ps annihilation lifetime,” 4(2), pp. 81-87, 2008. [6] D. TQ et al., “o-Ps Lifetimes in Iron Containing Micro- and Mesoporous Media,” Mater. Sci. Forum, 733, pp. 197-202, 2013. [7] F. A. Selim, A. W. Hunt, J. A. Golovchenko, R. H. Howell, R. Haakenaasen and K. G. Lynn, “Improved source and transport of monoenergetic MeV positrons,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 171(1), pp. 182-188, 2000. [8] S. M. -T. Beck et al., “Design of the Slow POsitron faciliTy (SPOT) in Israel,” J. Phys. Conf. Ser., 505, p. 12026, 2014. [9] C. K. Cheung, P. S. Naik, C. D. Beling, S. Fung and H. M. Weng, “Performance of a slow positron beam using a hybrid lens design,” Appl. Surf. Sci., 252(9), pp. 3132-3137, 2006. [10] H. X. Xu, J. D. Liu, C. B. Gao, H. M. Weng and B. J. Ye, “SIMION simulation of a slow pulsed positron beam,” Chinese Phys. C, 36(3), pp. 251-255, 2012. [11] C. T. Long, N. T. Hieu, T. Q. Dung and H. D. Phuong, “Some initial results of simulating a positron beam system by using Simion,” Nuclear Science and Technology., 7(3), pp. 17-24, 2017. [12] D. J. Manura and D. A. Dahl, Simion Version 8.0/8.1 User Manual, 5th ed. Scientific Instrument Services, 2011. [13] W. Anwand, G. Brauer, M. Butterling, H. R. Kissener, and A. Wagner, “Design and Construction of a Slow Positron Beam for Solid and Surface Investigations,” Defect Diffus. Forum, 331, pp. 25-40, 2012. [14] W. Anwand, “A magnetically guided slow positron beam for defect studies,” Acta Physica Polonica A, 88(1), pp. 7-11, 1995. [15] R. Krause-Rehberg, “A simple design for a continuous magnetically guided positron beam – and – News from the EPOS project,” report in APOSB, 2010.
File đính kèm:
- thiet_ke_nguyen_tac_he_thong_dan_chum_positron_cham_bang_chu.pdf