Signal & Systems - Lecture 7 - Trần Quang Việt
4.1. Biểu diễn tín hiệu không tuần hoàn dùng biến đổi Fourier
4.2. Các tính chất của biến đổi Fourier
4.3. Biến đổi Fourier của tín hiệu tuần hoàn
Tóm tắt nội dung Signal & Systems - Lecture 7 - Trần Quang Việt, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
tuần hoàn dùng biến đổi Fourier 4.2. Các tính chất của biến đổi Fourier 4.3. Biến đổi Fourier của tín hiệu tuần hoàn Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.1. Biểu diễn tín hiệu không tuần hoàn dùng biến đổi Fourier 4.1.1. Biến đổi Fourier 4.1.2. Điều kiện tồn tại biến đổi Fourier 4.1.3. Biến đổi Fourier của một số tín hiệu cơ bản 2Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.1.1. Biến đổi Fourier 0 ( )Tf t 0T Tín hiệu không tuần hoàn được xem như tín hiệu tuần hoàn có chu kỳ dài vô hạn Xét f(t) là tín hiệu không tuần hoàn: ( )f t Ta có quan hệ giữa f(t) và fT0(t) như sau: 0 0 TT f(t)= lim f (t) →∞ và fT0(t) là tín hiệu tuần hoàn được tạo thành do sự lặp lại f(t) với chu kỳ T0: Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 0 nT D 2sin Sω ω 0 0 2 n n T pi ω ω= = 0 02 /Tω pi= 0nω 0 nT D 2sin Sω ω 0 0 2 n n T pi ω ω= = 0 02 /Tω pi= 0nω 4.1.1. Biến đổi Fourier Biểu diễn fT0(t) dùng chuỗi Fourier 0 0 0 0 0 T /2 S -jnω t -jnω t 0 n T -T /2 -S 0 0 0 0 sinnω S1 1 2D = f (t)e dt= e dt= T T T nω∫ ∫ Gấp đôi T0: 3Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 0 nT D 2sin Sω ω 0 0 2 n n T pi ω ω= = 0 02 /Tω pi= 0nω 4.1.1. Biến đổi Fourier Tiếp tục tăng T0 [ ] 0 0 000 0 T /2 -jnω t -jωt 0 n T -T /2 -T T lim T .D = lim f (t)e dt = f(t)e dt=F(ω)∞ ∞→∞ →∞ ∫ ∫ Khi T0∞, T0Dn hàm liên tục Phổ của tín hiệu không tuần hoàn: 0 0 0 nT T ∆ω 0 0 F(nω ) 1D(ω)= lim [D ] lim F(ω) lim [∆ω] T 2pi→∞ →∞ → = = 0= Phổ của tín hiệu không tuần hoàn có tính chất phân bố Hàm mật độ phổ tín hiệu, F(ω), được xem là phổ tín hiệu Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.1.1. Biến đổi Fourier Tích phân Fourier 0 0 TT f(t) lim f (t) →∞ = jn ωt n 1lim F(n ω)e ω 2ω pi ∞ ∆ ∆ →∞ =−∞ = ∆ ∆∑0 0 jnω t nT n lim D e ∞ →∞ =−∞ = ∑ jωt1f(t) F(ω)e dω 2pi ∞ −∞ = ∫ Tóm lại ta có kết quả: f(t) F(ω)↔ jω tF(ω )= f(t)e dt∞ − −∞ ∫ Phương trình phân tích – Biến đổi Fourier thuận jωt1f(t)= F(ω)e dω 2pi ∞ −∞ ∫ Phương trình tổng hợp – Biến đổi Fourier ngược Cho phép phân tích/tổng hợp tín hiệu f(t) thành/từ các thành phần tần số, ejωt 4Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.1.2. Điều kiện tồn tại biến đổi Fourier Tín hiệu f(t) có năng lượng hữu hạn đều tồn tại F(ω) hữu hạn và năng lượng sai số bằng 0. Điều kiện Dirichlet: Điều kiện 1: T |f(t)|dt<∞∫ Điều kiện 2: f(t) có hữu hạn cực đại và cực tiểu trong khoảng thời gian hữu hạn Điều kiện 3: f(t) có hữu hạn số gián đoạn trong khoảng thời gian hữu hạn và gián đoạn phải có độ lớn là hữu hạn Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.1.3. Biến đổi Fourier của một số tín hiệu cơ bản f(t)=δ(t): -jωtF(ω)= δ(t)e dt= δ(t)dt=1∞ ∞ −∞ −∞ ∫ ∫ δ(t) 1↔ ( )tδ t 0 ω 0 ↔ 1 f(t)=e-atu(t); a>0: at jωt (a+jω)t (a+jω)t 0 0 1 1F(ω)= e u(t)e dt= e dt= e = a+jω a+jω ∞ ∞ ∞ − − − − −∞ −∫ ∫ at 1e u(t); a>0 a+jω − ↔ 5Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.1.3. Biến đổi Fourier của một số tín hiệu cơ bản 2 2 1( )F a ω ω = + 1( ) tan ( / )F aω ω−∠ = − ( )F ω 1/ a ω ω / 2pi / 2pi− ( )F ω∠ Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.1.3. Biến đổi Fourier của một số tín hiệu cơ bản f(t)=u(t): 0 0 1( ) ( ) ?j t j t j tF u t e dt e dt ej ω ω ωω ω +∞ +∞ +∞ − − − −∞ = = = − =∫ ∫ ( )ate u t− ( )u t t0 1 2 20 0 0 1( ) lim ( ) lim limat j t a a a a jF e u t e dt a j a ω ωω ω ω +∞ − − −∞→ → → − ⇒ = = = + + ∫ 0 ( ) lim ( )at a u t e u t− → = 2 20 1( ) lim a aF a jω ω ω→⇒ = ++ Diện tích bằng pi 1( ) ( )F jω piδ ω ω⇒ = + ( ) ( ) 1/u t jpiδ ω ω↔ + 6Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.1.3. Biến đổi Fourier của một số tín hiệu cơ bản f(t) xung cổng đơn vị: ( )e tr ct τ = 0 / 21 / 2 t t τ τ > < / 2 / 2 / 2/ 2 / 2 / 2 1( ) ( ) j j j t j t j tt e eF rect e dt e dt ej j τ ωτ ωτ τω ω ω τ τ τ ω ω ω − +∞ − − −∞ − − − = = = − =∫ ∫ ( ) ( ) ( ) ( ) 2 2 2 2 2sin sin( ) sinjF cj ωτ ωτ ωτ ωτ ω τ τ ω ⇔ = = = ⇒ ( )2( ) sintrect c ωττ τ↔ Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.2. Các tính chất của biến đổi Fourier Tính chất tuyến tính: 1 1 2 2f (t) F (ω); f (t) F (ω)↔ ↔ 1 1 2 2 1 1 2 2a f (t)+a f (t) a F(ω)+a F (ω)↔ Phép dịch thời gian: jωtf(t) F(ω)= f(t)e dt∞ − −∞ ↔ ∫ 0 0( ) ( ) j tf t t F e ωω −− ↔ Linear phase shift jωt 1 0 1 0f (t)=f(t t ) F (ω)= f(t t )e dt ∞ − −∞ − ↔ −∫ 0jω( +t ) = f( )e dττ τ∞ − −∞ ∫ 0jωt=F(ω)e− 7Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.2. Các tính chất của biến đổi Fourier Ví dụ: / 2ωτ− Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.2. Các tính chất của biến đổi Fourier Phép dịch tần số (điều chế): 0jω t 0f(t)e F(ω ω )↔ − jωtf(t) F(ω)= f(t)e dt∞ − −∞ ↔ ∫ 0 0jω t jω t jωt 1 1f (t)=f(t)e F (ω)= f(t)e e dt ∞ − −∞ ↔ ∫ 0 j(ω ω )t 0= f(t)e dt F(ω ω ) ∞ − − −∞ = −∫ Ví dụ: 0 0 0 1 1f(t)cosω t F(ω ) F(ω+ ) 2 2 ω ω↔ − + 0 0 0 1 1f(t)sinω t F(ω ) F(ω+ )j2 j2ω ω↔ − − 8Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.2. Các tính chất của biến đổi Fourier Tính đối ngẫu: jωtf(t) F(ω)= f(t)e dt∞ − −∞ ↔ ∫ jωt1f(t)= F(ω)e dω 2pi ∞ −∞ ∫ jωt 1f( t)= F(ω)e dω 2pi ∞ − −∞ − ∫ jωt1f( ω)= F(t)e dt 2pi ∞ − −∞ − ∫ jωt2pif( ω)= F(t)e dt∞ − −∞ − ∫ F(t) 2pif( ω)↔ − Ví dụ: δ(t) 1↔ 1 2piδ( ω)=2piδ(ω)↔ − t ωτ rect τsinc τ 2 ↔ ( )0 0 0 pi ω sinc ω t rect ω 2ω ↔ Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.2. Các tính chất của biến đổi Fourier Phép tỷ lệ thời gian: jωtf(t) F(ω)= f(t)e dt∞ − −∞ ↔ ∫ jωt 1 1f (t)=f(at) F (ω)= f(at)e dt ∞ − −∞ ↔ ∫ ωj τ a 1 10 : F (ω)= f(τ)e dτ a a −∞ −∞ > ∫ 1 ω = F a a ωj τ a 1 10 : F (ω)= f(τ)e dτ a a −∞ −∞ < − ∫ 1 ω = F a a − 1 ωf(at) F|a| a ↔ Phép đảo thời gian: jωtf(t) F(ω)= f(t)e dt∞ − −∞ ↔ ∫ f( t) F( ω)− ↔ − ate u( t) 1/(a jω)− ↔ −Ví dụ: ate u(t) 1/(a jω)− ↔ + 9Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.2. Các tính chất của biến đổi Fourier 1 1 2 2f (t) F (ω); f (t) F (ω)↔ ↔ jωt 1 2 1 2f(t)=f (t) f (t) F(ω)= f (t) f (t)e dt +∞ − −∞ ∗ ↔ ∗∫ + jωt 1 2 - - = f (τ) f (t τ)e dt dτ∞ +∞ − ∞ ∞ − ∫ ∫ jωτ 1 2f (τ)F (ω)e dτ +∞ − −∞ = ∫ jωτ 2 1 1 2F (ω) f (τ)e dτ F (ω)F (ω) +∞ − −∞ = =∫ 1 2 1 2f (t) f (t) F (ω)F (ω)∗ ↔ ( ) ( )2 22t 2t t ωTT TT T 2 T 4 4rect( ) rect( )= sinc∗ ∆ ↔ ( )2t ωTTT 2 4rect( ) sinc↔ ( ) ( )2t ωTTT 2 4sinc∆ ↔ Ví dụ: jωt 1 2F(ω)= f (τ)f (t τ)dτ e dt +∞ +∞ − −∞ −∞ − ∫ ∫ Có: Tích chập trong miền thời gian: Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.2. Các tính chất của biến đổi Fourier Tích chập trong miền tần số: 1 1 2 2f (t) F (ω); f (t) F (ω)↔ ↔ jωt 1 2 1f(t)= [F (ω) F (ω)]e dω 2pi +∞ −∞ ∗∫ jωt 1 2 1 [ F (τ)F (ω-τ)dτ]e dω 2pi +∞ +∞ −∞ −∞ = ∫ ∫ jωt 1 2 1 F (τ)[ F (ω-τ)e dω]dτ 2pi +∞ +∞ −∞ −∞ = ∫ ∫ jτt jxt 1 2 1 F (τ)e [ F (x)e dx]dτ 2pi +∞ +∞ −∞ −∞ = ∫ ∫ jτt 2 1f (t) F (τ)e dτ +∞ −∞ = ∫ 1 22pif (t)f (t)= 1 2 1 22pif (t)f (t) F (ω) F (ω)↔ ∗ 10 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.2. Các tính chất của biến đổi Fourier Đạo hàm trong miền thời gian: jωt1 2pif(t) F(ω)e dω +∞ −∞ = ∫ n n n d f(t) (jω) F(ω) dt ↔ f(t) F(ω)↔ jωt1 2pi df(t) jωF(ω)e dω dt +∞ −∞ = ∫ df(t) jωF(ω) dt ↔ Tích phân trong miền thời gian: f(t) u(t) f(τ)u(t τ)dτ+∞ −∞ ∗ = −∫ f(τ)dτ t −∞ = ∫ f(t) u(t) F(ω)[piδ(ω)+1/jω]∗ ↔ = piF(0)δ(ω)+F(ω)/jω f(τ)dτ piF(0)δ(ω)+F(ω)/jωt −∞ ↔∫ Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.2. Các tính chất của biến đổi Fourier Liên hiệp phức và tính đối xứng liên hiệp phức: jωtf(t) F(ω)= f(t)e dt∞ − −∞ ↔ ∫ jωt1 2pif(t) F(ω)e dω +∞ −∞ = ∫ * jωt * * jωt1 1 2pi 2pif (t) [ F(ω)e dω] F (ω)e dω +∞ +∞ − −∞ −∞ = =∫ ∫ * jωt1 2pi F ( ω)e dω +∞ −∞ = −∫ * *f (t) F ( ω)↔ − *F( ω)=F (ω)− f(t):Real |F(ω)| : even function of ω F(ω) : odd function of ω∠ 11 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.2. Các tính chất của biến đổi Fourier Định lý Parseval: 2 fE |f(t)| dt +∞ −∞ = ∫ *f(t)f (t)dt+∞ −∞ = ∫ jωt1 2f(t)[ F(ω)e dω] dtpi +∞ +∞ ∗ −∞ −∞ = ∫ ∫ * -jωt1 2pi F (ω)[ f(t)e dt]dω +∞ +∞ −∞ −∞ = ∫ ∫ *1 2pi F (ω)F(ω)dω +∞ −∞ = ∫ 21 f 2piE |F(ω)| dω +∞ −∞ = ∫ 2|F(ω)| Mật độ phổ năng lượng Định lý Parseval ω 2f(t)=sinc(t) F(ω)=2pirect( )↔Ví dụ: 2 2 ω1 f 2pi 2E 4pi rect ( )dω +∞ −∞ = ∫ 1 1 2pi dω 4pi − = =∫ Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.3. Biến đổi Fourier của tín hiệu tuần hoàn Biểu diễn tín hiệu tuần hoàn dùng chuỗi Fourier: 0jnω t n n= f(t)= D e +∞ −∞ ∑ 0 0 jnω t n T 0 1D = f(t)e dt T − ∫với: Biến đổi Fourier cho tín hiệu tuần hoàn: n 0 n= f(t) F(ω)= 2piD δ(ω nω ) +∞ −∞ ↔ −∑ n 1 npiD = sinc( ) 2 2 Ví dụ 1: 0 n= npiF(ω)= pisinc( )δ(ω nω ) 2 +∞ −∞ −∑ f ( t ) 0T T0=4S 12 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.3. Biến đổi Fourier của tín hiệu tuần hoàn F(ω) 0ω0ω− 22 pi ω Ví dụ 2: xác định phổ của hàm phân bố lược k= f(t)= δ(t kT) ∞ −∞ −∑ f(t) 1 t 0 T 2T-T-2T Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4.3. Biến đổi Fourier của tín hiệu tuần hoàn n 1D = T n= 2pi 2npiF(ω)= δ(ω ) T T +∞ −∞ −∑ F(ω) 2pi T 4pi T 4pi T − 2pi T − 0 2pi T ω
File đính kèm:
- signal_systems_lecture_7_tran_quang_viet.pdf