Sách hướng dẫn học tập Toán chuyên ngành Điện tử - Viễn thông
Tiếp theo chương trình toán học đại cương bao gồm giải tích 1, 2 và toán đại số. Sinh viên
chuyên ngành điện tử-viễn thông còn cần trang bịthêm công cụtoán xác suất thống kê và toán kỹ
thuật.
Để đáp ứng nhu cầu học tập của sinh viên chuyên ngành điện tửviễn thông của Học viện,
chúng tôi đã biên soạn tập bài giảng Toán kỹthuật từnăm 2000 theo đềcương chi tiết môn học
của Học viện. Qua quá trình giảng dạy chúng tôi thấy rằng cần hiệu chỉnh và bổsung thêm để
cung cấp cho sinh viên những công cụtoán học tốt hơn. Trong lần tái bản lần thứhai tập bài giảng
được nâng lên thành giáo trình, nội dung bám sát hơn nữa những đặc thù của chuyên ngành viễn
thông. Chẳng hạn trong nội dung của phép biến đổi Fourier chúng tôi sửdụng miền tần số f thay
cho miền ω. Dựa vào tính duy nhất của khai triển Laurent chúng tôi giới thiệu phép biến đổi Z
đểbiểu diễn các tín hiệu rời rạc bằng các hàm giải tích. Tuy nhiên do đặc thù của phương thức
đào tạo từxa nên chúng tôi biên soạn lại cho phù hợp với loại hình đào tạo này.
atatta −−
31. ( )
2 2
32 2
3s a
s a
−
+
a
att
2
sin2
32. ( )
3 2
32 2
3s a s
s a
−
+
att cos
2
1 2
33. ( )
4 2 2
42 2
6s a s a
s a
− +
+
4
att cos
6
1 3
34. ( )
3 2
42 2
s a s
s a
−
+
a
att
24
sin3
35. ( )32 2
1
s a−
5
22
8
ch3sh)3(
a
atatatta −+
36. ( )32 2
s
s a−
3
2
8
shch
a
attatat −
37. ( )
2
32 2
s
s a−
3
22
8
sh)1(ch
a
attaatat −+
38. ( )
3
32 2
s
s a−
a
atatatt
8
chsh3 2+
234
Phụ lục
39. ( )
4
32 2
s
s a−
a
atatatta
8
ch5sh)3( 22 ++
40. ( )
5
32 2
s
s a−
8
sh7ch)8( 22 atatatta ++
41. ( )
2 2
32 2
3s a
s a
+
−
a
att
2
sh2
42. ( )
3 2
32 2
3s a s
s a
+
−
att ch
2
1 2
43. ( )
4 2 2
42 2
6s a s a
s a
+ +
−
4
att ch
6
1 3
44. ( )
3 2
42 2
s a s
s a
+
−
a
att
24
sh3
45. 33
1
as + ⎭⎬
⎫
⎩⎨
⎧ +− − 2/32
2/
2
3cos
2
3sin3
3
at
at
eatat
a
e
46. 33 as
s
+
⎭⎬
⎫
⎩⎨
⎧ −+ − 2/3
2/
2
3cos
2
3sin3
3
at
at
eatat
a
e
47.
33
2
as
s
+ ⎟
⎟
⎠
⎞
⎜⎜⎝
⎛ +−
2
3cos2
3
1 2/ atee atat
48. 33
1
as − ⎭⎬
⎫
⎩⎨
⎧ −−
−
2
3cos
2
3sin3
3
2/3
2
2/ atate
a
e atat
49. 33
1
as − ⎭⎬
⎫
⎩⎨
⎧ +−
−
2/3
2/
2
3cos
2
3sin3
3
at
at
eatat
a
e
50.
33
2
as
s
− ⎟
⎟
⎠
⎞
⎜⎜⎝
⎛ + −
2
3cos2
3
1 2/ atee atat
51. 44 4
1
as + { }atatatata shcoschsin4
1
3 −
235
Phụ lục
52. 44 4as
s
+ 22
shsin
a
atat
53.
44
2
4as
s
+
{ }atatatat
a
shcoschsin
2
1 +
54.
44
3
4as
s
+
atat chcos
55. 44
1
as − { }atata sinsh2
1
3 −
56. 44 as
s
− { }atata cosch2
1
2 −
57.
44
2
as
s
−
{ }atat
a
sinsh
2
1 +
58.
44
3
as
s
−
{ }atat
a
cosch
2
1 +
59.
bsas +++
1
3)(2 tab
ee atbt
π−
− −−
60.
ass +
1
a
aterf
61.
)(
1
ass − a
ateaterf
62.
bas +−
1
⎭⎬
⎫
⎩⎨
⎧ − )erfc(1 2 tbbe
t
e tbat π
63. 22
1
as +
)(atJ0
64. 22
1
as −
)(atI0
65. 1;
22
22
−>
+
⎟⎠
⎞⎜⎝
⎛ −+
n
as
sas
n
)(atJa n
n
236
Phụ lục
66. 1;
22
22
−>
−
⎟⎠
⎞⎜⎝
⎛ −−
n
as
ass
n
)(atIa n
n
67.
2 2( )
2 2
b s s ae
s a
− +
+
))2(( bttaJ +0
68.
22
22
as
e asb
+
+−
)()( 22 btaJbt −−η 0
69. 322 )(
1
as +
a
attJ )(1
70. 322 )( as
s
+
)(attJ0
71. 322
2
)( as
s
+
)()( 10 attJatJ −
72.
)1()1(
1
s
s
s es
e
es −
−
−=−
...,2,1,0,1,)( =+<≤= nntnntx
73.
)1()(
1
s
s
s res
e
res −
−
−=−
[ ] [ ]trtx t
k
k ;)(
1
∑
=
= là phần nguyên của t
74.
)1(
1
)(
1
s
s
s
s
res
e
res
e
−
−
−
−=−
−
...,2,1,0,1,)( =+<≤= nntnrtx n
75.
s
e as /−
t
at
π
2cos
76.
3
/
s
e as−
a
at
π
2sin
77. 1;1
/
−>+
−
ααs
e as
)2(
2/
atJ
a
t α
α
⎟⎠
⎞⎜⎝
⎛
78.
s
e sa−
t
a
e
t
4
2
1 −
π
237
Phụ lục
79. sa−e t
a
e
t
a 4
3
2
2
−
π
80.
s
e sa−−1
⎟⎠
⎞⎜⎝
⎛
t
a
2
erf
81.
s
e sa−
⎟⎠
⎞⎜⎝
⎛
t
a
2
erfc
82.
)( bss
e sa
+
−
⎟⎠
⎞⎜⎝
⎛ ++
t
atbe abtb
2
erfc)(
83. 1;1
/
−>+
−
ααs
e sa
∫
∞ −
+
0
2412 )2(
1 2
2
duuJeu
at
ta
u
αααπ
84. ⎟⎠
⎞⎜⎝
⎛
+
+
bs
asln
t
ee atbt −− −
85. ⎟⎟⎠
⎞
⎜⎜⎝
⎛ +
2
22
ln
2
1
a
as
s
)(Ci at
86. ⎟⎠
⎞⎜⎝
⎛ +
a
as
s
ln1 )(Ei at
87.
s
sln+− γ tln ; γ là hằng số Euler
88. ⎟⎟⎠
⎞
⎜⎜⎝
⎛
+
+
22
22
ln
bs
as
t
btat )cos(cos2 −
89.
s
s
s
22 )ln(
6
++ γπ t2ln ; γ là hằng số Euler
90.
s
sln
)(ln γ+− t
91.
s
s2ln
6
)(ln
2
2 πγ −+t
92. 1
)1()1(
+
+Γ−+Γ
α
αα
s
s
; 1−>α tt lnα
238
Phụ lục
93. ⎟⎠
⎞⎜⎝
⎛
s
aarctg
t
atsin
94. ⎟⎠
⎞⎜⎝
⎛
s
a
s
arctg1 )(Si at
95. ( )/ erfc /a se a s
s
t
e at
π
2−
96. ( )2 2/ 4 erfc / 2s ae s a 222 taea −π
97. ( )2 2/ 4 erfc / 2s ae s
s
a
( )aterf
98. ( )erfcase as
s
)(
1
at +π
99. )(Ei aseas at +
1
100.
a
asasasas )(Cisin)(Si
2
cos −⎭⎬
⎫
⎩⎨
⎧ −π
22
1
at +
101. )(Cicos)(Si
2
sin asasasas +⎭⎬
⎫
⎩⎨
⎧ −π 22 at
t
+
102.
s
asasasas )(Cisin)(Si
2
cos −⎭⎬
⎫
⎩⎨
⎧ −π
)/(acrtg at
103.
s
asasasas )(Cicos)(Si
2
sin +⎭⎬
⎫
⎩⎨
⎧ −π
⎟⎟⎠
⎞
⎜⎜⎝
⎛ +
2
22
ln
2
1
a
at
104. )(Ci)(Si
2
2
2
asas +⎭⎬
⎫
⎩⎨
⎧ −π ⎟⎟⎠
⎞
⎜⎜⎝
⎛ +
2
22
ln1
a
at
t
105. 1 )(tδ - hàm Dirac
106. ase− )( at −δ
239
Phụ lục
107.
s
e as−
)( at −η
108. as
xs
s sh
sh1
∑∞
=
−+
1
cossin)1(2
n
n
a
tn
a
xn
na
x ππ
π
109. as
xs
s ch
sh1
a
tn
a
xn
nn
n
2
)12(sin
2
)12(sin
12
)1(4
1
ππ
π
−−
−
−∑∞
=
110. as
xs
s sh
ch1
∑∞
=
−+
1
sincos)1(2
n
n
a
tn
a
xn
na
t ππ
π
111. as
xs
s ch
ch1
a
tn
a
xn
nn
n
2
)12(cos
2
)12(cos
12
)1(41
1
ππ
π
−−
−
−+ ∑∞
=
112. as
xs
s sh
sh1
2 ∑
∞
=
−+
1
22 cossin
)1(2
n
n
a
tn
a
xn
n
a
a
xt ππ
π
113. as
xs
s ch
sh1
2 2
1
2
8 ( 1) (2 1) (2 1)sin cos
2 2(2 1)n
na n xx
a an
n tπ π
π
∞
=
− −+ −∑
−
114. as
xs
s sh
ch1
2
2
2 2
1
2 ( 1) cos 1 cos
2
n
n
t a n x n t
a an a
π π
π
∞
=
− ⎛ ⎞+ −⎜ ⎟⎝ ⎠∑
115. as
xs
s ch
ch1
2 2
1
2
8 ( 1) (2 1) (2 1)cos sin
2 2(2 1)n
na n xt
a an
n tπ π
π
∞
=
− −+ −∑
−
116.
sa
sx
sh
sh
∑∞
=
−−
1
/
2 sin)1(
2 222
n
atnn
a
xnne
a
ππ π
117.
sa
sx
ch
ch
2 2
1
(2 1)
21 4
2
(2 1)
(2 1)( 1) cos
2n
n t
n a nn
xe
aa
ππ π∞
=
−−
− −−−∑
118.
sa
sx
s ch
sh1
2 2
1
(2 1)
21 4 (2 1)2 ( 1) sin
2n
n t
n a n xe
a a
π π∞
=
−−
− −−∑
119.
sa
sx
s sh
ch1
2 2
1
21 2 ( 1) cos
2n
n t
n a n xe
a a a
π π∞
=
−
+ −∑
240
Phụ lục
120.
sa
sx
s sh
sh1
2 2
1
22 ( 1) sin
2n
n t
a n
nx xe
a n
π
a
π
π
∞
=
−−+ ∑
121.
sa
sx
s ch
ch1
2 2
1
1)(2
24 (2 1)4 ( 1)1 co
2 1 2n
n t
a n
n
s xe
n a
π π
π
∞
=
−− −−+ −∑
122.
sa
sx
s sh
sh1
2
2 2
2
2
2
1
2 ( 1) (1 )sin2 2
n t
a
n
nnxt a e
a an
π
xπ
π
−∞
=
−+ −∑
123.
sa
sx
s ch
ch1
2
2 2
2
2
1
1)(2
24 (2 1)
2 2 16 ( 1) cos32 2(2 1)n
n t
a n
na a xt e
an
π
π
∞
=
−− −− −+ −
−∑
x π
124.
)(
)(1 0
siaJ
sixJ
s 0
2 2/
0
11
( /1 2
( )
n t a
n
n nn
e J x
J
λ λ
λ λ
−∞
=
− ∑ )a
...,, 21 λλ là các nghiệm dương của 0)(0 =λJ
125.
)(0 siaJs
)(1 0
2
sixJ
2 2/2 2
2 0
3
1 1
( /2
4 ( )
n t a
n
n n n
e J xx a t a
J
λ λ
λ λ
−∞
=
− + + ∑ )a
...,, 21 λλ là các nghiệm dương của 0)(0 =λJ
126. )
2
(th12
as
as
241
127. )(th1 as
2s
128. )
2
(ch222
as
sa
a
π
π
+
129.
)1)(( 222 asesa
a
−−+π
π
130.
)1(
1
2 as
as
es
e
as −
−
−−
t1−
1
a a2 a3 a4
0
1
a2 a4
t
0
1
a2 a3
a
t
0
1
a2 a3
a
t
0
1
a2 a3
a
Phụ lục
131. )1( bs
as
e
s
e −− − )()( batat −−−− ηη
132.
)1(
1
ases −− ( ) ([ ]∑ )
∞
=
−−−−
1
)1(
n
natantn ηη
133. 2
2
)1( s
ss
es
ee
−
−−
−
+
( ) ([ ]∑ )∞
=
+−−−
0
2 )1(
n
ntntn ηη
134. 2)1(
1
as
s
res
e
−
−
−
−
( ) ([ ]∑ )∞
=
+−−−
0
)1(
n
n ntntr ηη
135.
222
)1(
π
π
+
+ −
sa
ea as
( )
a
tatt πηη sin)()( −−
242
Tài liệu tham khảo
243
TÀI LIỆU THAM KHẢO
1. Lê Bá Long, Tài liệu hướng dẫn học tập môn xác suất thống kê cho hệ đào tạo từ xa
chuyên ngành điện tử viễn thông.
2. Vũ Gia Tê, Lê Bá Long, Giáo trình toán chuyên ngành cho sinh viên hệ chính quy chuyên
ngành điện tử viễn thông. Học viện Công Nghệ Bưu Chính Viễn Thông, 2006.
3. Nguyễn Phạm Anh Dũng, Các hàm và xác suất ứng dụng trong viễn thông. Trung Tâm
Đào Tạo Bưu Chính Viễn Thông 1, 1999.
4. Nguyễn Quốc Trung, Xử lý tín hiệu và lọc số. NXB Khoa học và Kỹ thuật, Hà Nội, 2004
5. Nguyễn Duy Tiến (và tập thể), Các mô hình xác suất và ứng dụng, tập 1, 2, 3. NXB Đại
Học Quốc Gia Hà Nội, 2000.
6. D. L. (Paul) Minh, Applied probability models, Duxbury, Thomson Learning 2001.
7. A. Angot, Compéments de mathématiques a l’usage des ingénieurs de l’eslektrotechnique
et des tétécommunications. Paris, 1957.
8. A. V. Bitsadze, Equations of Mathematical Physics, Mir Publishers Moscow, 1980.
9. P.J. Buker, 1976. Proof of a conjecture on the interarrival-time distribution in an M/M/1
queue with feedback. IEEE Transactions on Communications, COM-24, 575-576.
10. L. W. Couch, II, Digital and Analog Communication Systems. 6th ed, Prentice Hall, 2001.
11. V. Ditkine et A. Proudnikov, Calcul opérationnel. Dịch ra tiếng Pháp bởi Djilali Embarex,
Mir 1979.
12. V. Ditkine et A. Proudnikov, Transformation intégrales et calcul opérationnel. Dịch ra
tiếng Pháp bởi Djilali Embarex, Mir 1978.
13. Charles Dixon, Applied Mathematics of science & Engineering. John Wiley & Sons:
London, New York, Sydney, Toronto 1980.
14. J. L. Doob, 1953. Stochastic Processes. Willey and Sons, New York.
15. B.A. Fukxơ và B. V. SaBat, Hàm biến phức và ứng dụng. Bản dịch tiếng Việt của Tràn
Gia Lịch, Lê Văn Thành và Ngô Văn Lược, NXB Khoa học Hà Nội, 1969.
16. S. Haykin, 1988. Digital communications. John Willey and Sons.
17. S. Karlin, 1966. A first Course in Stochastic Processes. Academic Press, New York and
London.
18. P. Quinn; B. Andrrews & H. Parsons, 1991. Allocating telecommunications resources at
L. L. Bean. Inc., Interfaces, 21, 75-91.
19. M. R. Spiegel, PhD, Theory and Problems of Laplace Transform. Schaum's outline series.
Mc Graw - Hill Book company, Inc. 1986.
20. E. J. Savant JR, Fundamentals of the Laplace Transformation. Mc Graw - Hill Book
company, Inc. 1962.
Tài liệu tham khảo
244
21. C. E. Shannon, Mathematical Theory of Communication. The Bell System Technical
Journal 1948, Vol. 27, pp. 379 - 423, 623 - 656.
22. R. E. Ziemer & R. L.Peterson, Introduction to digital communication, Macmillan
Publishing Company, 1992.
TOÁN CHUYÊN NGÀNH
Mã số : 491TNC214
Chịu trách nhiệm bản thảo
TRUNG TÂM ÐÀO TẠO BƯU CHÍNH VIỄN THÔNG 1
(Tài liệu này được ban hành theo Quyết định số : /QĐ-TTĐT1,
ngày /07/2006 của Giám đốc Học viện Công nghệ Bưu chính Viễn thông)
File đính kèm:
Unlock-Toan_VienThong.pdf

