Parallel Processing & Distributed Systems - Chapter 6: Processor Organization
Criteria:
– Diameter, bisection width, etc.
Processor Organizations:
– Mesh, binary tree, hypertree, pyramid, butterfly,
hypercube, shuffle-exchange
Tóm tắt nội dung Parallel Processing & Distributed Systems - Chapter 6: Processor Organization, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
ThoaiNam Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Criteria: – Diameter, bisection width, etc. Processor Organizations: – Mesh, binary tree, hypertree, pyramid, butterfly, hypercube, shuffle-exchange Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Diameter – The largest distance between two nodes – Lower diameter is better Bisection width The minimum number of edges that must be removed in order to divide the network into two halves (within one) Number of edges per node Maximum edge length Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Q-dimensional lattice Communication is allowed only between neighboring nodes. Interior nodes communicate with 2q other nodes. Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Q-dimensional mesh with kq nodes – Diameter: q(k-1) – Bisection width: kq-1 – The maximum number of edges per node: 2q – The maximum edge length is a constant Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Depth k-1: 2k-1 nodes Diameter: 2(k-1) Bisection width: 1 Length of the longest edge: increasing Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Bandwidth problem on binary tree Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Hypertree of degree k and depth d: a complete k-ary tree of height d. Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM A 4-ary hypertree with depth d has 4d leaves and 2d(2d+1-1) nodes in all – Diameter: 2d – Bisection width: 2d+1 – The number of edges per node ≤ 6 – Length of the longest edge: increasing Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Size k2: base a 2D mesh network containing k2 processors, the total number of processors=(4/3)k2 -1/3 A pyramid of size k2: – Diameter: 2logk – Bisection width: 2k – Maximum of links per node: 9 – Length of the longest edge: increasing Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM (k+1)2k nodes divided into k+1 rows (rank), each contains n=2k nodes. Ranks are labeled 0 through k Node(i,j): j-th node on the i-th rank Node(i,j) is connected to two nodes on rank i-1: node(i-1,j) and node (i-1,m), where m is the integer found by inverting the i-th most significant bit in the binary representation of j If node(i,j) is connected to node(i-1,m), then node (i,m) is connected to (i-1,j) Diameter=2k Bisection width=2k-1 Length of the longest edge: increasing Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Rank 0 Rank 1 Rank 2 Rank 3 Node(1,5): i=1, j=5 j = 5 = 101 (binary) i=1 001 = 1 Node(1,5) is connected to node(0,1) 0 1 2 3 4 5 6 7 Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM 2k nodes form a k-dimensional hypercube Nodes are labeled 0, 1, 2,…, 2k-1 Two nodes are adjacent if their labels differ in exactly one bit position Diameter=k Bisection width= 2k-1 Number of edges per node is k Length of the longest edge: increasing Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM 6 7 3 2 1 0 4 5 3 2 1 0 1 00 Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM 6 7 3 2 1 0 4 5 14 15 11 10 9 8 12 13 5 = 0101 1 = 0001 4 = 0100 13 = 1101 Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Cube-Connected cycles Shuffle-Exchange De Bruijn
File đính kèm:
- Parallel Processing & Distributed Systems - Chapter 6 Processor Organization.pdf