Parallel Processing & Distributed Systems - Chapter 10: Matrix Multiplication
Sequential matrix multiplication
Algorithms for processor arrays
– Matrix multiplication on 2-D mesh SIMD model
– Matrix multiplication on hypercube SIMD model
Matrix multiplication on UMA
multiprocessors
Matrix multiplication on multicomputers
ThoaiNam -2-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Sequential matrix multiplication Algorithms for processor arrays – Matrix multiplication on 2-D mesh SIMD model – Matrix multiplication on hypercube SIMD model Matrix multiplication on UMA multiprocessors Matrix multiplication on multicomputers -3-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Global a[0..l-1,0..m-1], b[0..m-1][0..n-1], {Matrices to be multiplied} c[0..l-1,0..n-1], {Product matrix} t, {Accumulates dot product} i, j, k; Begin for i:=0 to l-1 do for j:=0 to n-1 do t:=0; for k:=0 to m-1 do t:=t+a[i][k]*b[k][j]; endfor k; c[i][j]:=t; endfor j; endfor i; End. -4-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Matrix multiplication on 2-D mesh SIMD model Matrix multiplication on Hypercube SIMD model -5-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Gentleman(1978) has shown that multiplication of to n*n matrices on the 2-D mesh SIMD model requires 0(n) routing steps We will consider a multiplication algorithm on a 2- D mesh SIMD model with wraparound connections -6-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM For simplicity, we suppose that – Size of the mesh is n*n – Size of each matrix (A and B) is n*n – Each processor Pi,j in the mesh (located at row i,column j) contains ai,j and bi,j At the end of the algorithm, Pi,j will hold the element ci,j of the product matrix -7-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Major phases (a) Initial distribution of matrices A and B (b) Staggering all A’s elements in row i to the left by i positions and all B’s elements in col j upwards by i positions a3,3 b3,3 a3,2 b3,2 a3,1 b3,1 a3,0 b3,0 a2,3 b2,3 a2,2 b2,2 a2,1 b2,1 a2,0 b2,0 a1,3 b1,3 a1,2 b1,2 a1,1 b1,1 a1,0 b1,0 a0,3 b0,3 a0,2 b0,2 a0,1 b0,1 a0,0 b0,0 a3,3 b3,0 a2,3 b3,1 a2,2 b2,0 a1,3 b3,2 a1,2 b2,1 a1,1 b1,0 a0,3 b3,3 a0,2 b2,2 a0,1 b1,1 a0,0 b0,0 a3,2a3,1a3,0 a2,1a2,0 a1,0 b2,3b1,2b0,1 b1,3b0,2 b0,3 -8-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM (c) Distribution of 2 matrices A and B after staggering in a 2-D mesh with wrapparound connection a3,2 b2,3 a3,1 b1,2 a3,0 b0,1 a3,3 b3,0 a2,1 b1,3 a2,0 b0,2 a2,3 b3,1 a2,2 b2,0 a1,0 b0,3 a1,3 b3,2 a1,2 b2,1 a1,1 b1,0 a0,3 b3,3 a0,2 b2,2 a0,1 b1,1 a0,0 b0,0 (b) Staggering all A’s elements in row i to the left by i positions and all B’s elements in col j upwards by i positions a3,3 b3,0 a2,3 b3,1 a2,2 b2,0 a1,3 b3,2 a1,2 b2,1 a1,1 b1,0 a0,3 b3,3 a0,2 b2,2 a0,1 b1,1 a0,0 b0,0 a3,2a3,1a3,0 a2,1a2,0 a1,0 b2,3b1,2b0,1 b1,3b0,2 b0,3 Each processor P(i,j) has a pair of elements to multiply ai,k and bk,j -9-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM The rest steps of the algorithm from the viewpoint of processor P(1,2) a1,3 b3,2 b2,2 b0,2 b1,2 a1,1 a1,2 a1,0 (a) First scalar multiplication step a1,0 b0,2 b3,2 b1,2 b2,2 a1,2 a1,3 a1,1 (b) Second scalar multiplication step after elements of A are cycled to the left and elements of B are cycled upwards -10-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM a1,1 b1,2 b0,2 b2,2 b3,2 a1,3 a1,0 a1,2 (c) Third scalar multiplication step after second cycle step (d) Third scalar multiplication step after second cycle step. At this point processor P(1,2) has computed the dot product c1,2 a1,2 b2,2 b1,2 b3,2 b0,2 a1,0 a1,1 a1,3 -11-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Detailed Algorithm Global n, {Dimension of matrices} k ; Local a, b, c; Begin for k:=1 to n-1 do forall P(i,j) where 1 ≤ i,j < n do if i ≥ k then a:= fromleft(a); if j ≥ k then b:=fromdown(b); end forall; endfor k; Stagger 2 matrices a[0..n-1,0..n-1] and b[0..n-1,0..n-1] -12-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM forall P(i,j) where 0 ≤ i,j < n do c:= a*b; end forall; for k:=1 to n-1 do forall P(i,j) where 0 ≤ i,j < n do a:= fromleft(a); b:=fromdown(b); c:= c + a*b; end forall; endfor k; End. Compute dot product -13-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Can we implement the above mentioned algorithm on a 2-D mesh SIMD model without wrapparound connection? -14-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Design strategy 5 – If load balancing is not a problem, maximize grain size Grain size: the amount of work performed between processor interactions Things to be considered – Parallelizing the most outer loop of the sequential algorithm is a good choice since the attained grain size (0(n3/p)) is the biggest – Resolving memory contention as much as possible -15-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Algorithm using p processors Global n, {Dimension of matrices} a[0..n-1,0..n-1], b[0..n-1,0..n-1]; {Two input matrices} c[0..n-1,0..n-1]; {Product matrix} Local i,j,k,t; Begin forall Pm where 1 ≤ m ≤ p do for i:=m to n step p do for j:= 1 to n to t:=0; for k:=1 to n do t:=t+a[i,k]*b[k,j]; endfor j; c[i][j]:=t; endfor i; end forall; End. -16-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Things to be considered – Try to resolve memory contention as much as possible – Increase the locality of memory references to reduce memory access time Design strategy 6 – Reduce average memory latency time by increasing locality The block matrix multiplication algorithm is a reasonable choice in this situation – Section 7.3, p.187, Parallel Computing: Theory and Practice -17-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM We will study 2 algorithms on multicomputers – Row-Column-Oriented Algorithm – Block-Oriented Algorithm -18-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM The processes are organized as a ring – Step 1: Initially, each process is given 1 row of the matrix A and 1 column of the matrix B – Step 2: Each process uses vector multiplication to get 1 element of the product matrix C. – Step 3: After a process has used its column of matrix B, it fetches the next column of B from its successor in the ring – Step 4: If all rows of B have already been processed, quit. Otherwise, go to step 2 -19-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM Why do we have to organize processes as a ring and make them use B’s rows in turn? Design strategy 7: – Eliminate contention for shared resources by changing the order of data access -20-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM A B C A B C A B C A B C Example: Use 4 processes to mutliply two matrices A4*4 and B4*4 1st iteration -21-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM A B C A B C A B C A B C Example: Use 4 processes to mutliply two matrices A4*4 and B4*4 2nd iteration -22-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM A B C A B C A B C A B C Example: Use 4 processes to mutliply two matrices A4*4 and B4*4 3rd iteration -23-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM A B C A B C A B C A B C Example: Use 4 processes to mutliply two matrices A4*4 and B4*4 4th iteration (the last)
File đính kèm:
- Parallel Processing & Distributed Systems - Chapter 10 Matrix Multiplication.pdf