Nghiên cứu và xây dựng mô hình chống sét van trong MATLAB-SIMULINK để bảo vệ chống quá điện áp cho thiết bị điện

Quá điện áp xảy ra trong hệ thống điện gây nguy hiểm cho cách điện của các thiết bị, đặc

biệt là các thiết bị quan trọng. Bài báo cáo trình bày tác dụng của chống sét van (CSV) trong việc

bảo vệ thiết bị điện khi xảy ra quá điện áp. Các mô phỏng dùng phương pháp mô hình hóa trong

công cụ Simulink để thể hiện rõ quá trình hoạt động, các đặc tính và khả năng bảo vệ của CSV

trong việc hạn chế quá điện áp trên tụ bù dọc, kháng bù ngang và các cuộn dây của máy điện. Kết

quả nghiên cứu cho thấy sự cần thiết phải trang bị CSV cho các thiết bị quan trọng, từ đó nghiên

cứu việc tính toán lựa chọn loại CSV cũng như số lượng CSV cần lắp đ ặt để đảm bảo sự làm việc

độ tin cậy của CSV trong việc bảo vệ thiết bị điện.

pdf6 trang | Chuyên mục: MATLAB | Chia sẻ: dkS00TYs | Lượt xem: 1858 | Lượt tải: 2download
Tóm tắt nội dung Nghiên cứu và xây dựng mô hình chống sét van trong MATLAB-SIMULINK để bảo vệ chống quá điện áp cho thiết bị điện, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
e electrical equipment protection. 
1. Đặt vấn đề 
Quá điện áp khí quyển do sét lan truyền trên các đường dây trên không và quá điện 
áp do các sự cố trong hệ thống điện có thể lớn hơn điện áp thí nghiệm xung của cách điện 
của các thiết bị điện, dẫn đến gây chọc thủng cách điện, phá hoại thiết bị quan trọng như tụ 
bù dọc, kháng bù ngang và máy biến áp. Thiết bị CSV được sử dụng để bảo vệ các thiết bị 
nói trên với mục đích là luôn giới hạn điện áp trên các đầu cực thiết bị được bảo vệ ở dưới 
mức điện áp an toàn của thiết bị. Đề tài này đề xuất việc sử dụng mô hình CSV trong 
Matlab-Simulink để nghiên cứu sự làm việc của CSV bảo vệ cho các thiết bị điện, đồng 
thời đề xuất việc lựa chọn các thông số, số lượng của CSV cần đặt nhằm bảo vệ cho các 
thiết bị điện và cả CSV. Đồng thời đề tài cũng đề xuất việc mô hình hóa thiết bị CSV để 
phục vụ nghiên cứu bảo vệ máy điện khi có quá điện áp khí quyển. 
2. Sử dụng mô hình CSV trong Simulink mô phỏng quá trình bảo vệ quá điện áp cho 
tụ bù dọc và kháng bù ngang 
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010 
131 
2.1. Mô hình mô phỏng 
 Xét hệ thống đường dây cung cấp điện cho phụ tải dài 200km có cấp điện áp 
500kV. Sự cố chạm đất trong mô phỏng xảy ra ở cuối đường dây và được loại trừ khi máy 
cắt tải cắt. Đường dây được bù với hệ số bù 40%. Kháng bù ngang được đặt tại cuối đường 
dây có công suất 110Mvar. Đặt CSV MOV1 bảo vệ cho tụ bù dọc, dựa vào mức cách điện 
dọc của tụ, điện áp phóng điện yêu cầu của CSV là 2,5 lần điện áp định mức của tụ. Từ đó 
ta xác định được điện áp bảo vệ tương ứng cài đặt cho mô hình CSV MOV1 là Uprot = 
154,15kV. Kháng bù ngang được bảo vệ bởi khối chống sét MOV2 có điện áp phóng điện 
gấp 1,5 lần điện áp pha. Điện áp bảo vệ tương ứng cài đặt cho MOV2 là Uprot = 
612,238kV. 
Hình 1. Mô hình được sử dụng cho mô phỏng 
2.2. Quá trình mô phỏng 
 Tại thời điểm sự cố chạm đất xảy ra (thời điểm t= 0,02s), điện áp đặt lên tụ bù tăng 
lên. Khi đạt tới điện áp bảo vệ tương ứng Vprot của MOV1 thì MOV1 bắt đầu phóng điện. 
Dòng phóng điện qua MOV1 đạt đến 8kA sau 0,026s kể từ thời điểm sự cố, điện áp đặt lên 
MOV1 là 150,3kV. Giá trị này thấp hơn điện áp chịu đựng của cách điện của tụ. Do đó 
CSV MOV1 đã thực hiện chức năng bảo vệ chống quá điện áp cho tụ bù khi có ngắn mạch 
cuối đường dây. 
Hình 2. Điện áp và dòng trên chống sét van MOV1 
 Tại thời điểm sự cố được loại trừ (lúc máy cắt tải Load CB cắt vào thời điểm t= 
0,1s) thì tại thanh góp B2 xuất hiện quá điện áp và CSV MOV2 có nhiệm vụ bảo vệ quá 
điện áp cho kháng bù ngang phía cuối đường dây. Xung dòng qua MOV2 có độ lớn 1300A 
ứng với điện áp đặt lên MOV2 là 620kV. 
Hình 3. Điện áp và dòng trên chống sét van MOV2 
2.3. Đánh giá vai trò của CSV trong quá trình bảo vệ quá điện áp 
 Từ kết quả mô phỏng sự làm việc của các CSV để bảo vệ cho tụ bù dọc và kháng 
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010 
132 
bù ngang, đưa ra các đặc tính so sánh quá điện áp đặt vào các thiết bị cần bảo vệ khi có đặt 
CSV và khi không có đặt CSV. 
Hình 4. Điện áp trên bộ tụ trong trường hợp không lắp đặt CSV và trường hợp có lắp đặt CSV 
Hình 5. Điện áp trên kháng bù ngang trong trường hợp không lắp đặt CSV và có lắp đặt CSV 
1
5.2987
2.4641
0
1
2
3
4
5
6
pu
1
Điện áp lớn nhất trên tụ bù dọc trong các trường hợp 
Điện áp làm việc bình
thường lớn nhất của tụ
bù(cột bên trái)
Quá điện áp trên tụ bù khi
không đặt CSV(cột ở
giữa)
Quá điện áp trên tụ bù khi
có lắp đặt CSV(cột bên
phải) 
1
2.3595
1.7729
0
0.5
1
1.5
2
2.5
pu
1
Điện áp lớn nhất trên kháng bù ngang trong các trường hợp 
Điện áp làm việc bình
thường lớn nhất của
kháng bù ngang(cột bên
trái)
Quá điện áp trên kháng
bù ngang khi không đặt
CSV(cột ở giữa)
Quá điện áp trên kháng
bù ngang khi có lắp đặt
CSV(cột bên phải) 
Hình 6. Điện áp lớn nhất trên tụ bù dọc và kháng bù ngang trong 3 trường hợp 
2.4. Năng lượng hấp thụ của các CSV trong thời gian phóng điện 
Năng lượng hấp thụ là một thông số quan trọng của chống sét van. Nếu mức năng 
lượng vượt quá khả năng hấp thụ của chống sét có thể dẫn tới việc phá hủy tức thời đối với 
chống sét và làm hư hỏng chống sét. Mô phỏng đã tính được mức năng lượng hấp thụ đó 
theo thời gian phóng điện của chống sét. 
a) Chống sét van MOV1 b) Chống sét van MOV2 
Hình 7. Năng lượng hấp thụ bởi CSV của tụ bù dọc và kháng bù ngang trong thời gian phóng điện 
 Kết quả cho thấy mức năng lượng được chống sét van MOV1 hấp thụ là 9MJ trong 
thời gian phóng điện của nó,còn đối với MOV2 là 0,62MJ. Mức năng lượng hấp thụ bởi 
CSV bảo vệ cho tụ bù dọc là rất cao, do đó cần phải tính toán lựa chọn các CSV có khả 
năng hấp thụ các mức năng lượng cần thiết để mắc song song các CSV với nhau nhằm đảm 
bảo cho các CSV làm việc an toàn. Trong trường hợp này, nếu ta chọn loại CSV có điện áp 
định mức 60kV, mức năng lượng hấp thụ là 12kJ/kV(UR), với thời gian ngắn mạch là 0,1s 
thì số lượng CSV cần nối song song ít nhất là 12 CSV. 
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010 
133 
3. Chống sét van bảo vệ quá điện áp do xung sét cho máy điện 
3.1. Mô hình dạng xung sét chuẩn 
Biểu thức toán học các dạng xung sét không chu kỳ được sử dụng rộng rãi trong 
lĩnh vực điện cao áp có dạng: 
 1 2
0( )
t t
T Ti t KI e e (1) 
 1 2
0( )
t t
T Tu t KU e e (2) 
 Trên cơ sơ các biểu thức toán học thành lập mô hình trong matlab 
Hình 8. Nguồn dòng của xung không chu kỳ Hình 9. Nguồn áp của xung không chu kỳ 
 Chạy mô hình ta được kết quả dạng sóng 
Hình 10.Nguồn phát xung 8/20μs – 10kA Hình 11. Nguồn phát xung 1,2/50μs -10kA 
3.2. Mô hình CSV dạng MOV 
3.2.1. Mô hình đề nghị 
Hình 12. Mô hình CSV mô phỏng Hình 13. Đặc tính V-I của MOV 
Các điện trở phi tuyến A0, A1 được xác định dựa vào các đường đặc tính V-I ở hình 13. 
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010 
134 
3.2.2. Mô hình sử dụng CSV bảo vệ máy biến áp (MBA) khi có xung điện áp sét truyền vào trạm 
Hình 14. Mô hình trạm biến áp Hình 15. Mô hình thay thế trạm biến áp 
 Xét mô hình trạm biến áp 110kV/22kV như hình 14. Hệ thống truyền tải qua MBA 
110kV/22KV công suất 20MVA, điện trở nối đất của CSV là 1Ω. Cách điện của MBA được 
thiết kế là 360 kV. Chống sét được sử dụng là loại AZG3008G070090 của hãng Cooper: 
Đặc tính kỹ thuật của CSV 
Rate 
Voltage 
(KV) 
Continuous 
operating 
voltage (KV) 
1/5 μs-10 kA 
(KV) 
High 
Arrester 
(mm) 
8/20 μs Maximum Discharge 
Voltage (kV) 
5 (kA) 10 (kA) 20 (kA) 
90 70 242 1219 199 213 235 
 Kết quả điện áp thu được trong trường hợp có và 
không có đặt CSV 
 U1: điện áp đặt vào MBA khi không có CSV bảo vệ 
 U1: điện áp đặt vào MBA khi có CSV bảo vệ 
 Từ kết quả ở hình 16 ta thấy khi không đặt CSV 
thì điện áp đặt vào cách điện của MBA là 2MV lớn hơn 
nhiều lần cách điện của MBA sẽ gây ra phá hỏng MBA. 
Trong trường hợp đặtCSV, ta thấy rằng điện áp đặt lên 
MBA sẽ nhỏ hơn điện áp cách điện của MBA. 
Hình 16. Có đặt CSV 
3.3. Nghiên cứu ảnh hưởng của điện trở nối đất và độ dốc đầu sóng đến điện áp dư của CSV 
3.3.1. Ảnh hưởng của điện trở nôi đất đến điện áp dư 
 Tiến hành mô phỏng với việc thay đổi giá 
trị điện trở nối đất của CSV ta có kết quả ở hình 7. 
 Trên cơ sở mô phỏng ta thấy điện trở nối 
đất ảnh hưởng rất lớn đối với điện áp dư, kết quả 
mô phỏng giúp ta chọn giới hạn cho điện trở nối 
đất phù hợp. Với MBA công suất lớn, thông 
thường hệ số dự trữ là 1.5 nên điện trở đất của 
CSV phải nhỏ hơn 4 Ω. 
 Hình 17. Đặc tính Udư theo Rđ 
3.3.2. Ảnh hưởng của độ dốc đầu sóng đến điện áp dư 
 Tiến hành mô phỏng với việc thay đổi độ dốc xung sét truyền vào trạm. 
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010 
135 
 Theo kết quả mô phỏng hình 18 ta thấy điện áp dư 
bị ảnh hưởng rất lớn khi độ dốc thay đổi. Thời gian đầu 
sóng càng bé thì điện áp dư càng lớn, càng gây nguy hiểm 
cho cách điện MBA. Điều đó giải thích tại sao trong nhiều 
trường hợp đã thiết kế CSV theo qui phạm mà vẫn bị hỏng 
thiết bị đó là do xung sét có độ dốc quá lớn,vượt ngoài tiêu 
chuẩn thiết kế. 
3.3.3. Ảnh hưởng của vị trí sét đánh đến điện áp dư 
 Tiến hành mô phỏng khi thay đổi vị trí sét đánh trên dọc đường dây từ 1-1000 m 
Chiều dài(m) 1 10 100 200 400 600 800 1000 
Điện dung dây dẫn (pF) 8.73 87.3 873 1746 3492 5238 6980 8730 
Udư (kV) 221.2 221 219 217.2 212 206 201.1 197 
 Mô phỏng cho thấy được ảnh hưởng của vị trí sét đánh đối điện áp đặt lên và điện 
áp dư của chống sét, vị trí càng xa trạm thì điện áp truyền vào trạm càng nhỏ và ít gây ảnh 
hưởng đối với các thiết bị. 
Kết luận 
 Tính mới của đề tài là nghiên cứu được mô hình và lập mô phỏng CSV dạng MOV 
của các nhà sản xuất khác nhau từ các số liệu bất kỳ.Thông qua mô hình mô phỏng ta thấy 
được ảnh hưởng của độ dốc đầu sóng, vị trí sét đánh và điện trở đất đối với điện áp dư của 
CSV, đồng thời úng dụng vào thực tế để chọn điện trở nối đất cho CSV. 
 Kết quả cho thấy các CSV này đóng vai trò quan trọng để giảm thành phần quá 
điện áp gây nguy hiểm cho cách điện của tụ bù dọc, kháng bù ngang, máy biến áp và giới 
hạn quá điện áp được giữ ở mức an toàn cách điện của thiết bị. 
TÀI LIỆU THAM KHẢO 
[1] Manchester Data Encoding for Radio Communications. 
[2] Back to the future Manchester encoding. 
[3] Using the XGATE for Manchester. 
[4] Michael Duck, Peter Bishop, Richard Read. Data communication, addison –wesley. 
[5] Hoàng minh sơn. Mạng truyền thông công nghiệp.Hoàng Minh Sơn, Nhà suất bản 
khoa học và kỹ thuật, suất bản năm 2001. 
[6] Giáo trình đo lường và điều khiển xa dùng cho sinh viên nghành kĩ thuật: Khoa điện – 
Bộ môn tự động hóa Đại học Bách Khoa Đà Nẵng 08-2009. 
[7] Đỗ Trung Tá. Công nghệ ATM - giải pháp cho mạng viễn thông băng rộng 1998. 
Hình 18. Udư theo độ dốc sóng 

File đính kèm:

  • pdfNghiên cứu và xây dựng mô hình chống sét van trong MATLAB-SIMULINK để bảo vệ chống quá điện áp cho thiết bị điện.pdf