Lý thuyết mạch - Nguyễn Trung Tập
Tín hiệu là sự biến đổi của một hay nhiều thông số của một quá trình vật lý nào đó
theo qui luật của tin tức.
Trong phạm vi hẹp của mạch điện, tín hiệu là hiệu thế hoặc dòng điện. Tín hiệu có thể
có trị không đổi, ví dụ hiệu thế của một pin, accu; có thể có trị số thay đổi theo thời gian, ví
dụ dòng điện đặc trưng cho âm thanh, hình ảnh. . . .
Tín hiệu cho vào một mạch được gọi là tín hiệu vào hay kích thích và tín hiệu nhận
được ở ngã ra của mạch là tín hiệu ra hay đáp ứng.
Người ta dùng các hàm theo thời gian để mô tả tín hiệu và đường biểu diễn của chúng
trên hệ trục biên độ - thời gian được gọi là dạng sóng.
Dưới đây là một số hàm và dạng sóng của một số tín hiệu phổ biến
.17b) cho mạch biến đổi của tụ (H 10.8c) MẠCH _________________________________________Chương 10 Phép biến đổi Laplace - 13 ___________________________________________________________________________ Nguyễn Trung Lập LÝ THUYẾT (a) (b) (c) (H 10.8) Thí dụ 10.12 Xác định i(t) khi t>0 của mạch (H 10.9a). Cho i(0)=4A và v(0)=8V (a) (H 10.9) (b) Mạch biến đổi cho bởi (H 10.11b) I(s)= 2/ss3 8/s43)(2/s ++ −++ = 3)2)(s3s(s 3)-8)(s-(4s2s 2 +++ + = 3)2)(s1)(s(s 24-6s4s2 +++ + Triển khai I(s) I(s)= 3s 3 2s 20 1s 13 +−+++− Suy ra, khi t>0 i(t)=-13e-t+20e-2t- 3e-3t A Thí dụ 10.13 Xác định v(t) của mạch (H 10.10a). Cho i(0)=1A và v(0)=4V (a) (b) (H 10.10) Viết phương trình nút cho mạch biến đổi (H 10.10b) 0 24 4 24 sV s 1 3s V 4 V =−+++ MẠCH _________________________________________Chương 10 Phép biến đổi Laplace - 14 ___________________________________________________________________________ Nguyễn Trung Lập LÝ THUYẾT ⇒ V(s)= 4s 20 2s 16 4)2)(s(s 244s +++−=++ − và v(t)=-16e-2t+20e-4t V 10.5 CÁC PHƯƠNG PHÁP TRIỂN KHAI HÀM P(s)/Q(s) Trong phân giải mạch điện bằng phép biến đổi Laplace, kết quả đạt được là một hàm theo s có dạng P(s)/Q(s) , trong đó P(s) và Q(s) là các đa thức. Nếu P(s)/Q(s) có dạng trong bảng 1 thì ta có ngay kết quả biến đổi Laplace ngược. Trong nhiều trường hợp ta phải triển khai P(s)/Q(s) thành tổng các hàm đơn giản hơn và có trong bảng. Gọi m và n là bậc của P(s) và Q(s) Có 2 trường hợp * m≤n, có thể triển khai ngay P(s)/Q(s) * m>n, ta phải thực hiện phép chia để được (s)Q (s)P sA.....sAA Q(s) P(s) 1 1nm nm10 ++++= −− (10.18) P1(s) và Q1(s) có bậc bằng nhau và ta có thể triển khai P1(s)/Q1(s) 10.5.1. Triển khai từng phần Ò Trường hợp 1 Q(s)=0 có nghiệm thực phân biệt s1 , s2, . . . sn. n n 2 2 1 1 s-s K s-s K s-s K Q(s) P(s) +++= ..... (10.19) Ki (i= 1, 2,. . . ., n) là các hằng số xác định bởi: i ssQ(s) P(s) )s(sK ii = −= (10.20) Thí dụ 10.14 Triển khai hàm I(s)= 23ss 1s 2 ++ − , xác định i(t)=L -1[I(s)] Phương trình s2+3s+2=0 có 2 nghiệm s1=-2 và s2=-1 I(s)= 23ss 1s 2 ++ − = 1s K 2s K 21 +++ 3 Q(s) P(s) 2)(sK -s 1 =+= = 2 -2 Q(s) P(s) 1)(sK -s 2 =+= = 1 I(s)= 1s 2 2s 3 +−+ MẠCH _________________________________________Chương 10 Phép biến đổi Laplace - 15 ___________________________________________________________________________ Nguyễn Trung Lập LÝ THUYẾT ⇒ i(t)= 3e-2t-2e-t Ò Trường hợp 2 Q(s)=0 có nghiệm đa trùng bậc r r2r ..... )s-(s K )s-(s K s-s K )s-(s P(s) Q(s) P(s) i r i 2 i 1 i +++== (10.21) Để xác định K1, K2, . . . Kr, ta xét thí dụ sau: Thí dụ 10.15 Triển khai 21)(s 2s Q(s) P(s) + += 21)(s K 1s K Q(s) P(s) 21 +++= (1) Nhân 2 vế phương trình (1) với (s+1)2 s+2=(s+1)K1+K2 (2) Cho s=-1, ta được K2=1 Nếu ta cũng làm như vậy để xác định K1 thì sẽ xuất hiện các lượng vô định Để xác định K1, lấy đạo hàm theo s phương trình (2) 1+0=K1+0 ⇒ K1=1 Tóm lại 21)(s 1 1s 1 Q(s) P(s) +++= Và i(t) = e-t + te-t Với Q(s)=0 có nghiệm kép, một hằng số được xác định nhờ đạo hàm bậc 1. Suy rộng ra, nếu Q(s)=0 có nghiệm đa trùng bậc r, ta cần các đạo hàm từ bậc 1 đến bậc r-1. Ò Trường hợp 3 Q(s)=0 có nghiệm phức liên hợp s=α ± jω )j-)(sj--(s P(s) Q(s) P(s) ω+αωα= (10.22) )j-(s *K )j--(s K Q(s) P(s) ω+α+ωα= (10.23) Các hằng số K xác định bởi θ−=ω+α−= ω−α= jAe Q(s) P(s) )j(sK js , Và θ+=ω−α−= ω+α= jAe Q(s) P(s) )j(sK* js (10.24) Thí dụ 10.16 Triển khai I(s)= 54ss 1 Q(s) P(s) 2 ++= Q(s)=0 có 2 nghiệm -2 ± j MẠCH _________________________________________Chương 10 Phép biến đổi Laplace - 16 ___________________________________________________________________________ Nguyễn Trung Lập LÝ THUYẾT I(s)= j)-2-(s *K j)2(s K Q(s) P(s) +++= °==++= −−= 0e 2 1 2 1j Q(s) P(s)j)2(sK js 9j 2 °−=−=−+= +−= 0e 2 1 2 1j Q(s) P(s)j)2(sK* js 9j 2 I(s)= j-2s j1/2 j2s j1/2 +−++ ⇒ i(t)= ]e[e 2 1j )tj2()tj2( +−−− − = ] 2j ee[e tjt 2t j− − − Hay i(t)=e-2tsint A 10.5.2 Công thức Heaviside Tổng quát hóa các bài toán triển khai hàm I(s)=P(s)/Q(s), Heaviside đưa ra công thức cho ta xác định ngay hàm i(t), biến đổi ngươc của I(s) 10.5.2.1 Q(s)=0 có n nghiệm phân biệt i(t)=L -1[I(s)] = L -1 j stn 1j j ssQ(s) P(s)e)s(s] Q(s) P(s)[ = ∑ = −= (10.25) Hoặc i(t) tsje )(sQ' )P(sn 1j j j∑ = = (10.26) Trong đó sj là nghiệm thứ j của Q(s)=0 Thí dụ 10.17 Giải lại thí dụ 10.14 bằng công thức Heaviside I(s)= 23ss 1s 2 ++ − , xác định i(t)=L -1[I(s)] Phương trình s2+3s+2=0 có 2 nghiệm s1=-2 và s2=-1 Q(s)= s2+3s+2 ⇒ Q’(s) = 2s+3 Ap dụng công thức (10.26) i(t) te 1)(Q' 1)P(2te 2)(Q' 2)P( e )(sQ' )P(s tsjn 1j j j − − −+−− −== ∑ = ⇒ i(t)= 3e-2t-2e-t A 10.5.2.2 Q(s)=0 có nghiệm đa trùng bậc r i(t)=L -1[I(s)] = L -1 j n-r j n-r1nr 1n ssds )R(sd 1)!(n t n)!-(r 1] Q(s) P(s)[ =−= − = ∑ts je (10.27) MẠCH _________________________________________Chương 10 Phép biến đổi Laplace - 17 ___________________________________________________________________________ Nguyễn Trung Lập LÝ THUYẾT sj là nghiệm đa trùng bậc r r)) jj s(sQ(s) P(s)R(s −= (10.28) Thí dụ 10.18 Giải lại thí dụ 10.15 bằng công thức Heaviside I(s)= 21)(s 2s Q(s) P(s) + += Q(s)=0 có nghiệm kép, r=2, sj=-1 Ap dụng công thức (10.27) Với 2s1)(s 1)(s 2s)R(s 22j +=++ += 1s2)(s 1! t 0! 1 ds 2)d(s 0! t 1! 1[e(t) 10 t −=+++= − ;]i Và i(t) = e-t + te-t A Thí dụ 10.19 Cho mạch điện (H 10.11), tụ C tích điện đến V0=1V và khóa K đóng ở t=0. Xác định dòng i(t) 0dt dt dLR t =++ ∫ ∞− iii Lấy biến đổi Laplace L[sI(s)-i(0+)]+RI(s)+ Cs 1 [I(s)+q(0+)]=0 Dòng điện qua cuộn dây liên tục nên i(0+)= i(0-)=0 q(0+): điện tích ban đầu của tụ: s 1 s V Cs )q(0 o −==+ (Để ý dấu của điện tích đầu trên tụ ngược chiều điện tích nạp bởi dòng i(t) khi chạy qua mạch) Thay giá trị đầu vào, sắp xếp lại 11)(s 1 22ss 1I(s) 22 ++=++= ⇒ i(t)=L -1[I(s)]=e-tsint.u(t) Thí dụ 10.20 Cho mạch (H 10.12), khóa K đóng ở t=0 và mạch không tích trữ năng lượng ban đầu. Xác định i2(t) Viết pt vòng cho mạch 100u(t)1020 dt d 21 1 =−+ iii (1) 01020 dt d 12 2 =−+ iii (2) MẠCH _________________________________________Chương 10 Phép biến đổi Laplace - 18 ___________________________________________________________________________ Nguyễn Trung Lập LÝ THUYẾT Lấy biến đổi Laplace, để ý mạch không tích trử năng lượng ban đầu: (s+20)I1(s)-10I2(s)= s 100 (3) -10 I1(s)+ (s+20)I2(s)=0 (4) Giải hệ (3) và (4) I2(s)= 300)40ss(s 1000 20s10 1020s 010 s 10020s 2 ++= +− −+ − + Triển khai I2(s) 30s 1,67 10s 5 s 3,33(s)I 2 ++++= ⇒ i2(t)= 3,33-5e-10t+1,67e-30t 10.6 ĐỊNH LÝ GIÁ TRỊ ĐẦU VÀ GIÁ TRỊ CUỐI 10.6.1 Định lý giá trị đầu Từ phép biến đổi của đạo hàm: L dt df(t) = sF(s)-f(0+) Lấy giới hạn khi s→ ∞ [L ∞→s lim dt df(t) ] = [sF(s)-f(0+)] ∞→s lim mà [L ∞→s lim dt df(t) ]= ∞→s lim ∫ ∞ −0 dtedtdf(t) st =0 Vậy [sF(s)-f(0+)]=0 ∞→s lim f(0+) là hằng số nên f(0+)= sF(s) (10.29) ∞→s lim (10.29) chính là nội dung của định lý giá trị đầu Lấy trường hợp thí dụ 10.10, ta có: I(s)= 1/RCs 1 R /CqV 0 + − i(0+)= sI(s)= ∞→s lim R /CqV 0− 10.6.2 Định lý giá trị cuối MẠCH _________________________________________Chương 10 Phép biến đổi Laplace - 19 ___________________________________________________________________________ Nguyễn Trung Lập LÝ THUYẾT Từ phép biến đổi đạo hàm: L dt df(t) = sF(s)-f(0+) Lấy giới hạn khi s→ 0 [L 0s lim → dt df(t) ] = 0s lim → ∫ ∞ − 0 dte dt df(t) st = [sF(s)-f(0+)] 0s lim → mà 0s lim → ∫ ∞ − 0 dte dt df(t) st = = 0s lim → ∫ ∞ +∞= 0 )f(0-)f(df(t) Vậy f(∞)-f(0+)= [sF(s)-f(0+)] 0s lim → Hay f(∞)= sF(s) (10.30) 0s lim → (10.30) chính là nội dung của định lý giá trị cuối, cho phép xác định giá trị hàm f(t) ở trạng thái thường trực. Tuy nhiên, (10.30) chỉ xác định được khi nghiệm của mẫu số của sF(s) có phần thực âm, nếu không f(∞)= f(t) không hiện hữu. ∞→t lim Thí dụ, với f(t)=sint thì sin∞ không có giá trị xác định (tương tự cho e∞ ). Vì vậy (10.30) không áp dụng được cho trường hợp kích kích là hàm sin. Lấy lại thí dụ 10.13, xác định dòng điện trong mạch ở trạng thái thường trực I(s)= ) R/Ls 1 s 1( R V +− i(∞)= sI(s)= 0s lim → R V) R/Ls s(1 R V =+− i(∞)= R V BÀI TẬP ÒÒÒ 10.1 Mạch (H P10.1). Khóa K đóng ở t=0 và mạch không tích trữ năng lượng ban đầu. Xác định i(t) khi t> 0 10.2 Mạch (H P10.2). Xác định v(t) khi t> 0. Cho v(0)=10V (H P10.1) (H P10.2) 10.3 Mạch (H P10.3). Xác định vo(t) MẠCH _________________________________________Chương 10 Phép biến đổi Laplace - 20 ___________________________________________________________________________ Nguyễn Trung Lập LÝ THUYẾT Cho vi(t) = ⎩⎨ ⎧ > < − 0t ,4e 0t 4V, t 10.4 Mạch (H P10.4). Xác định vo(t). Cho vo(0)=4V và i(0)=3A (H P10.3) (H P10.4) 10.5 Mạch (H P10.5). Xác định io(t). 10.6 Mạch (H P10.6). Dùng định lý kết hợp xác định vo(t). (H P10.5) (H P10.6) 10.7 Mạch (H P10.7) đạt trạng thái thường trực ở t=0- với khóa K ở vị trí 1. Chuyển K sang vị trí 2, thời điểm t=0. Xác định i khi t>0 (H P10.7) 10.8 Mạch (H P10.8) đạt trạng thái thường trực ở t=0. Xác định v khi t>0 (H P10.8) 10.9 Mạch (H P10.9) đạt trạng thái thường trực ở t=0- Xác định i khi t>0 MẠCH _________________________________________Chương 10 Phép biến đổi Laplace - 21 ___________________________________________________________________________ Nguyễn Trung Lập LÝ THUYẾT (H P10.9) 10.10 Mạch (H P10.10). Xác định i(t) khi t>0. Cho v(0) = 4 V và i(0) = 2 A (H P10.10) MẠCH
File đính kèm:
- ly_thuyet_mach_nguyen_trung_tap.pdf