Lý thuyết mạch (Dùng cho sinh viên hệ đào tạo đại học từ xa)
Tính ổn định của hệ thống liên quan tới vị trí của các điểm không và các điểm cực của H(p) trên
mặt phẳng phức như hình 4.2. Chúng
là một cơ sở quan trọng để xác định
đặc trưng của hệ thống.
+ Trên các hệ thống ổn định, với mọi
tác động hữu hạn thì đáp ứng cũng
phải hữu hạn. Hệ thống là ổn định
khi và chỉ khi mọi điểm cực của H(p)
nằm bên nửa trái của mặt phẳng
phức, tức là Re[pk]<0, với mọi
k=1,2, .,n.
+ Hệ thống nằm ở biên giới ổn định
nếu khi và chỉ khi các điểm cực của
H(p) nằm bên nửa trái mặt phẳng phức, ngoại trừ có thể tồn tại các điểm cực không lặp nằm trên
trục ảo.
σ=Re[p]
Im[p]
Hình 4.2: Mặt phẳng phức
k/hiệu điểm cực
k/hiệu điểm không
+ Hệ thống là không ổn định khi tồn tại điểm cực của H(p) nằm bên nửa phải mặt phẳng phức,
hoặc tồn tại điểm cực lặp nằm trên trục ảo.
Điều kiện ổn định của các mạch điện tuyến tính, bất biến, có thông số tập trung là mọi điểm cực
của H(p) nằm bên nửa trái của mặt phẳng phức. Đối với các mạch thụ động, có thể tồn tại các
điểm cực (không lặp) nằm trên trục ảo mà mạch vẫn ổn định bởi vì mạch không bao giờ bị tự kích
với bất kỳ sự thay đổi nào của các thông số. Còn đối với các mạch tích cực, nếu tồn tại các điểm
cực nằm trên trục ảo, thì dưới tác động của bất kỳ sự thay đổi nhỏ nào của các thông số mạch, các
điểm cực hoàn toàn có thể nhảy sang nửa mặt phẳng phải và mạch sẽ bị tự kích
, )1 1 20 1 0 177 49 2 2ξ -Điện kháng của mạch: Ω X r= = =ξ. , . ,0 177 20 3 54 -Biên độ điện áp ra trên tụ: U Q E VC ch= + = + = . . , ( , )1 44 25 1 0 177 43 2 0 2ξ ω ω -Các độ lệch pha: ϕ ξe i Z arctg arctg− = = = =arg ,0 177 100 ϕ ξ πe UC arctg− = + = + =2 10 90 100 0 0 0 Dòng điện trong mạch chậm pha so với sức điện động nên mạch mang tính chất điện cảm (điện kháng X=3,54Ω > 0). 195 Phụ lục PHỤ LỤC 3 VẤN ĐỀ TỔNG HỢP MẠCH TUYẾN TÍNH Lưu đồ hình 7-4 mô tả các bước tổng quát trong toàn bộ quá trình thiết kế mạch. Hình 7-4: Quá trình thiết kế mạch Bắt đầu từ các chỉ tiêu cho trước Tài liệu có sẵn Đã thiết kế bao giờ chưa ? Đưa ra một mô hình trên cơ sở tổng hợp mạch hoặc trên cơ sở kinh nghiệm thiết kế Phân tích Cấu trúc cụ thể Phân tích mạch Lắp ráp mạch Đo đạc Đã thoả mãn các chỉ tiêu chưa ? Đã thoả mãn các chỉ tiêu chưa ? N N N N Dừng Đã thoả mãn các chỉ tiêu chưa ? 196 Phụ lục Như vậy, phân tích và tổng hợp mạch là hai quá trình không thể tách rời trong thiết kế mạch điện tử. a. Tính chất của bài toán tổng hợp mạch - Khác với kết quả duy nhất của bài toán phân tích mạch, đối với bài toán tổng hợp mạch có thể tìm ra nhiều sơ đồ thoả mãn yêu cầu đặt ra. - Các quá trình truyền đạt trong mạch tuyến tính thường bị phụ thuộc vào tính chất tần số của mạch, do đó bài toán tổng hợp thường quy về việc tìm các thông số của mạch theo đặc tuyến tần số đã cho. - Bài toán tổng hợp mạch thường tuần tự giải quyết ba vấn đề, bao gồm: 1. Vấn đề xấp xỉ: cần phải tìm hàm mạch gần đúng F(p) vừa thỏa mãn các chỉ tiêu cho trước, vừa thỏa mãn các điều kiện là hàm cho phép. Hàm cho phép là hàm mạch thỏa mãn một số điều kiện cần và đủ để có thể thực hiện được với các phần tử mạch yêu cầu. 2. Vấn đề thực hiện mạch theo hàm mạch cho phép: đó là công việc thiết lập sơ đồ mạch điện theo hàm F(p) và xác định giá trị của các phần tử. 3. Vấn đề chọn sơ đồ tối ưu: Việc chọn mạch thường dựa trên các quan điểm tối ưu về công nghệ, sử dụng, độ nhạy và dung sai. Trong các vấn đề nêu trên, vấn đề thực hiện mạch theo hàm mạch cho phép chỉ là sự thực hiện một cách máy móc theo các phương pháp biết trước, còn xấp xỉ là vấn đề khó khăn hơn cả. Do các đặc tuyến của trở kháng, dẫn nạp hoặc các hàm truyền đạt được cho dưới dạng graph, đồ thị... còn hàm cho phép được viết dưới dạng phân thức hữu tỉ, nên bài toán xấp xỉ sẽ tìm ra được các hàm cho phép gần đúng với các tiêu chuẩn cho trước để thực hiện được dưới dạng mạch một cửa hoặc hai cửa. - Điểm cực và điểm không đặc trưng cho hàm mạch: Ta đã biết các phương pháp để biểu diễn các hàm đặc trưng của mạch điện, bao gồm f(t) trong miền thời gian với công cụ chính là phương trình vi phân, F(ω) trong miền tần số với công cụ chủ yếu là cặp biến đổi Fourier, và F(p) Trong miền tần số phức sử dụng công cụ là cặp biến đổi Laplace. Trong đó việc biểu diễn ở miền tần số phức p là dễ dàng nhất cho các quá trình tính toán và thiết kế mạch điện, hơn nữa từ miền tần số phức này ta hoàn toàn có thể chuyển một cách đơn giản sang các miền khác bằng biến đổi Laplace ngược hay bằng sự thay thế p=jω. Do đó nguời ta thường chọn cách đặc trưng cho mạch điện bằng hàm mạch F(p). Hàm này có thể là trở kháng hoặc dẫn nạp nếu là mạch hai cực, có thể là hàm truyền đạt giữa đại lượng đầu ra và đại lượng đầu vào nếu là mạch bốn cực. Một cách tổng quát F(p) là một phân thức hữu tỉ và có thể biểu diễn dưới nhiều dạng khác nhau theo các điểm cực và điểm không: F p a p b p r r r n q q q m ( ) = = = ∑ ∑ 0 0 = − − = = ∏ ∏ K p p p p i i n j j m1 1 1 ( ) ( ) = − − = = ∏ ∏ K p p p p ii n jj m2 1 1 1 1 ( ) ( ) (7-37) Trong đó điểm không của hàm mạch là các điểm pi mà tại đó tử số bằng không và F(pi)=0. Điểm cực của hàm mạch là các điểm pj làm cho mẫu số bằng không và tại đó F(pj)=∞. Các điểm cực và điểm không được hoàn toàn xác định đối với mỗi hàm mạch, cho nên chúng đặc trưng cho mạch điện. Dựa vào chúng có thể vẽ được đặc tuyến tần số của F(p) và đặc tuyến tần số của mạch điện. 197 Phụ lục b. Vấn đề xấp xỉ trong tổng hợp mạch Xấp xỉ vật lý là sự lựa chọn mô hình toán học cho một hiện tượng vật lý. Nếu sự xấp xỉ này là hợp lý thì mô hình toán học mô tả đúng hiện tượng. Nói chung không có biểu thức chính xác đánh giá sai số của sự xấp xỉ vật lý. Cần phân biệt giữa xấp xỉ vật lý và xấp xỉ toán học. Xấp xỉ toán học là sự thực hiện gần đúng các quá trình tính toán trong toán học, sai số của nó nói chung có thể đánh giá được. Để thực hiện xấp xỉ toán học, người ta thường dùng chuỗi Taylor và chuỗi Fourier. Vấn đề xấp xỉ trong tổng hợp mạch, khác với xấp xỉ toán học, xuất phát từ các chỉ tiêu cho trước dưới dạng đồ thị trong miền thời gian hoặc trong miền tần số, công việc đầu tiên phải tiến hành là xấp xỉ bằng các hàm mạch cho phép. Nếu hàm xấp xỉ gần đúng các chỉ tiêu (với sai số ε yêu cầu) mà thoả mãn là một hàm mạch cho phép F(p) thì mạch điện thuộc hàm F(p) đó có thể thực hiện được. Nếu xấp xỉ không có phương pháp thì sẽ dẫn đến kết quả là một mạch điện không đạt các chỉ tiêu đề ra. Do đó vấn đề xấp xỉ là một vấn đề quan trọng nhất nhưng cũng khó khăn nhất. Các phương pháp xấp xỉ có thể chia làm hai nhóm: Xấp xỉ theo cách thử và xấp xỉ bằng con đường trực tiếp. *Nhóm xấp xỉ theo cách thử, thường có các phương pháp sau đây: 1. Thiết kế trên cơ sở phân tích: Trong trường hợp này mạch nguyên lý xấp xỉ các chỉ tiêu cho trước đã được biết do kinh nghiệm. Tiến hành phân tích để tìm ra mối liên hệ giữa các phần tử mạch và các chỉ tiêu cho trước. Từ đó xác định được hàm mạch và mạch điện cụ thể. 2. Xấp xỉ bằng đồ thị Bode. 3. Xấp xỉ nội suy. *Nhóm xấp xỉ theo con đường trực tiếp: Việc xấp xỉ hàm mạch cho trước F j( )ω bằng hàm mạch F(p) có thể theo phương pháp trực tiếp, thí dụ như: 1. Xấp xỉ với độ bằng phẳng cực đại (còn gọi là xấp xỉ Butterworth). 2. Xấp xỉ đều (xấp xỉ Chebyshev). 3. Xấp xỉ êliptic (Cauer) 4. Xấp xỉ Chebyshev ngược... Tuỳ theo tính chất của từng loại mạch cần phải tổng hợp mà các phương pháp này sẽ cho các biểu thức tính toán khác nhau. c. Vấn đề thực hiện hàm mạch: Sau khi giải xong bài toán xấp xỉ, chúng ta nhận được hàm F(p) một mặt thoả mãn các chỉ tiêu cho trước, mặt khác thoả mãn điều kiện hàm cho phép. Bước tiếp theo sẽ là thực hiện hàm mạch đã tìm được, tức là xác định cấu trúc và giá trị các phần tử trong cấu trúc đó. -Với hai cực thụ động RLC, hàm mạch thường được biểu diễn qua trở kháng Z(p). Việc thực hiện các hàm mạch này có thể sử dụng các phương pháp FOSTER, CAUER hoặc BRUNE. - Với bốn cực thụ động, hàm mạch thường được biểu diễn qua các thông số zij và yij. Người ta thường dùng phương pháp Cauer hoặc phương pháp khử điểm cực và đẩy điểm không để thực 198 Phụ lục hiện bốn cực LC và RC. Nhìn chung mỗi một phương pháp tổng hợp có một ưu thế nhất định, tuỳ theo tính chất của hàm mạch mà áp dụng sao cho phù hợp nhất. d. Vấn đề chọn sơ đồ tối ưu: Sau khi thực hiện được các kiểu sơ đồ tương đương nhau thoả mãn hàm mạch, cần phải xem xét các yếu tố của nó, cộng thêm các điều kiện phụ (như điều kiện sản xuất, tiêu chuẩn kinh tế) để lựa chọn lấy phương án tối ưu đưa vào sản xuất. Cũng cần chú ý rằng trong tổng hợp mạch, số lượng phần tử trong mạch cũng là một yếu tố quan trọng để đánh giá kết quả, do đó tối ưu mạch với số phần tử ít nhất là một trong những vấn đề cần nghiên cứu trong tổng hợp và thiết kế mạch. e. Tổng hợp mạch tích cực Các bước chính của quá trình tổng hợp mạch tích cực về cơ bản cũng giống như tổng hợp bốn cực thụ động. Ngoài ba vấn đề đã nêu, trong trường hợp mạch tích cực do thường dùng các phần tử tích cực, vì vậy cần phải điều chỉnh một chiều mạch vừa tổng hợp. Lưu đồ hình 7-5 mô tả các bước tổng quát tổng hợp mạch tuyến tính, đây là một trong các công đoạn chủ yếu trong toàn bộ quá trình thiết kế mạch. Ta có thể thực hiện được hàm mạch có dạng phân thức hữu tỉ bằng mạch điện gồm các phần tử: điện dung, điện trở, nguồn điều khiển, NIC, mạch khuếch đại thuật toán... Thông thường người ta lấy một hoặc nhiều phần tử tích cực và mắc chúng với các mạch n cửa thụ động, sau đó từ K(p) xác định giá trị các phần tử tích cực và các hàm cho phép của các mạch n cửa thụ động và thực hiện cụ thể các hàm này. Ở dải tần thấp, việc tổng hợp mạch tích cực RC dùng bộ KĐTT là sự lựa chọn tối ưu. Với các hàm mạch bậc cao, người ta thường sử dụng các phương pháp tách đa thức và mắc nối dây chuyền các khâu bậc hai và bậc một. Hình 7-5: Các bước tổng hợp mạch tuyến tính Xấp xỉ Thực hiện mạch Các sơ đồ tương đương - chọn tối ưu Điều chỉnh một chiều Khảo sát độ nhạy, dung sai, Các quan điểm công nghệ K(p) Sơ đồ mạch điện Các chỉ tiêu cho trước Các hàm cho phép Đối với mạch tích cực cũng cần phải chú ý đến mô hình của nó trong các điều kiện làm việc khác nhau. Thông thường các phần tử tích cực lý tưởng thường chỉ được thực hiện thích hợp với mô hình của nó trong một dải tần số nhất định cùng với một số phần tử thụ động hỗ trợ. 199 Phụ lục TÀI LIỆU THAM KHẢO 1. Phạm Thị Cư, Mạch điện (tập 1, 2), NXB KHKT, 1996. 2. Phạm Minh Hà, Kỹ thuật mạch điện tử, NXB KHKT, 2002. 3. Phương Xuân Nhàn, Tín hiệu - Mạch và hệ thống vô tuyến điện, NXBĐH-THCN, 1972. 4. Đỗ Xuân thụ, Kỹ thuật điện tử, NXB Giáo dục, 1997. 5. Hồ Anh Tuý, Lý thuyết Mạch (tập 1, 2), NXB KHKT, 1997. 6. Brogan,W.L., Modern control Theory, Prentice Hall, 1991. 7. Brigham,E.O., Transforms and applications, Prentice Hall, 1988. 8. Rugh,W.J., Linear systems theory, Prentice Hall, 1996. 200 LÝ THUYẾT MẠCH Mã số: 411LTM240 Chịu trách nhiệm bản thảo TRUNG TÂM ÐÀO TẠO BƯU CHÍNH VIỄN THÔNG 1 (Tài liệu này được ban hành theo Quyết định số: 816/QĐ-TTĐT1 ngày 25/10/2006 của Giám đốc Học viện Công nghệ Bưu chính Viễn thông)
File đính kèm:
- ly_thuyet_mach_dung_cho_sinh_vien_he_dao_tao_dai_hoc_tu_xa.pdf