Kỹ thuật lập trình - Chương 8: Tiến tới tư duy lập trình hướng đối tượng

8.1 Đặtvấn₫ề

8.2 Giớithiệuvídụchươngtrìnhmôphỏng

8.3 Tưduy"rất" cổ₫iển

8.4 Tưduyhướnghàm

8.5 Tưduydựatrên₫ốitượng(object-based)

8.6 Tưduythựcsựhướng₫ốitượng

pdf21 trang | Chuyên mục: C/C++ | Chia sẻ: dkS00TYs | Lượt xem: 1434 | Lượt tải: 2download
Tóm tắt nội dung Kỹ thuật lập trình - Chương 8: Tiến tới tư duy lập trình hướng đối tượng, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
i dung chương 8
8.1 Đặt vấn ₫ề
8.2 Giới thiệu ví dụ chương trình mô phỏng
8.3 Tư duy "rất" cổ ₫iển
8.4 Tư duy hướng hàm
8.5 Tư duy dựa trên ₫ối tượng (object-based)
8.6 Tư duy thực sự hướng ₫ối tượng
3Chương 8: Tiến tới tư duy hướng đối tượng
8.1 Đặt vấn ₫ề
„Designing object-oriented software is hard, and designing reusable 
object-oriented software is even harder...It takes a long time for 
novices to learn what object-oriented design is all about. Exprienced 
designers evidently know something inexperienced ones don't...
One thing expert designers know not to do is solve every problem from 
first principles. Rather, they reuse solutions that have worked for 
them in the past. When they find a good solution, they use it again 
and again. Such experience is part of what makes them experts. 
Consequently, you'll find recurring patterns of classes and 
communicating objects in many object-oriented systems. These 
patterns solve specific design problems and make object-oriented 
design more flexible, elegant, and ultimately reusable...“
Erich Gamma et. al.: Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.
4Chương 8: Tiến tới tư duy hướng đối tượng
8.2 Phần mềmmô phỏng kiểu FBD
StaticGain Limiter IntegratorSum Scope1(t)
Nhiệm vụ:
Xây dựng phần mềm ₫ể hỗ trợ mô phỏng thời gian thực một
cách linh hoạt, mềm dẻo, ₫áp ứng ₫ược các yêu cầu của từng
bài toán cụ thể
Trước mắt chưa cần hỗ trợ tạo ứng dụng kiểu kéo thả bằng
công cụ ₫ồ họa
5Chương 8: Tiến tới tư duy hướng đối tượng
8.3 Tư duy rất cổ ₫iển
// SimProg1.cpp
#include 
#include 
#include 
void main() {
double K =1,I=0, Ti = 5;
double Hi = 10, Lo = -10;
double Ts = 0.5;
double r =1, y=0, e, u, ub; 
cout << "u\ty";
while (!kbhit()) {
e = r-y; // Sum block
u = K*e; // Static Gain
ub = max(min(u,Hi),Lo); // Limiter
I += ub*Ts/Ti; // Integrator state
y = I; // Integrator output
cout << '\n' << u << '\t' << y;
cout.flush();
Sleep(long(Ts*1000));
}
}
6Chương 8: Tiến tới tư duy hướng đối tượng
Vấn ₫ề?
ƒ Phần mềm dưới dạng chương trình, không có giá trị
sử dụng lại
ƒ Rất khó thay ₫ổi hoặc mở rộng theo yêu cầu cụ thể
của từng bài toán
ƒ Toàn bộ thuật toán ₫ược gói trong một chương trình
=> khó theo dõi, dễ gây lỗi, không bảo vệ ₫ược chất
xám
7Chương 8: Tiến tới tư duy hướng đối tượng
// SimProg2.cpp
#include 
#include 
#include 
#include "SimFun.h"
void main() {
double K = 5.0, double Ti = 5.0;
double Hi = 10, Lo = -10;
double Ts = 0.5;
double r =1, y=0, e, u, ub; 
cout << "u\ty";
while (!kbhit()) {
e = sum(r,-y); // Sum block
u = gain(K,e); // Static Gain
ub= limit(Hi,Lo,u); // Limiter
y = integrate(Ti,Ts,ub); // Integrator output
cout << '\n' << u << '\t' << y;
cout.flush();
Sleep(long(Ts*1000));
}
}
8.4 Tư duy hướng hàm
8Chương 8: Tiến tới tư duy hướng đối tượng
// SimFun.h
inline double sum(double x1, double x2) { return x1 + x2; }
inline double gain(double K, double x) { return K * x; }
double limit(double Hi, double Lo, double x);
double integrate(double Ti, double Ts, double x);
// SimFun.cpp
double limit(double Hi, double Lo, double x) { 
if (x > Hi) x = Hi;
if (x < Lo) x = Lo;
return x;
}
double integrate(double Ti, double Ts, double x) {
static double I = 0;
I += x*Ts/Ti;
return I;
}
9Chương 8: Tiến tới tư duy hướng đối tượng
Vấn ₫ề?
ƒ Vẫn chưa ₫ủ tính linh hoạt, mềm dẻo cần thiết
ƒ Thay ₫ổi, mở rộng chương trình mô phỏng rất khó
khăn
ƒ Các khâu có trạng thái như khâu tích phân, khâu trễ
khó thực hiện một cách "sạch sẽ" (trạng thái lưu trữ
dưới dạng nào?)
ƒ Rất khó phát triển thành phần mềm có hỗ trợ ₫ồ họa
kiểu kéo thả
10Chương 8: Tiến tới tư duy hướng đối tượng
8.5 Tư duy dựa ₫ối tượng
// SimClass.h
class Sum {
public:
double operator()(double x1, double x2) { 
return x1 + x2; 
}
};
class Gain { 
double K;
public:
Gain(double k = 1) : K(k) {}
double operator()(double x){ return K * x; }
};
class Limiter {
double Hi, Lo;
public:
Limiter(double h=10.0, double l= -10.0);
double operator()(double x);
};
11Chương 8: Tiến tới tư duy hướng đối tượng
class Integrator {
double Ki, Ts;
double I;
public:
Integrator(double ti = 1.0, double ts = 0.5); 
double operator()(double x);
};
class Delay {
double* bufPtr;
int bufSize;
double Td, Ts;
public:
Delay(double td = 0, double ts = 1);
Delay(const Delay&);
Delay& operator=(Delay&);
~Delay();
double operator()(double x);
private:
void createBuffer(int sz);
};
12Chương 8: Tiến tới tư duy hướng đối tượng
#include 
#include "SimClass.h"
Limiter::Limiter(double h, double l) : Hi(h), Lo(l) {
if (Hi < Lo) Hi = Lo;
}
double Limiter::operator()(double x) { 
if (x > Hi) x = Hi;
if (x < Lo) x = Lo;
return x;
}
Integrator::Integrator(double ti, double ts) 
: Ts(1), Ki(1), I(0) {
if (ts > 0) 
Ts = ts;
if (ti > 0)
Ki = ts/ti;
}
double Integrator::operator()(double x) {
I += x*Ki;
return I;
}
13Chương 8: Tiến tới tư duy hướng đối tượng
Delay::Delay(double td, double ts) : Td(td), Ts(ts) {
if (Td < 0) Td = 0;
if (Ts < 0) Ts = 1;
createBuffer((int)ceil(Td/Ts));
}
double Delay::operator()(double x) {
if (bufSize > 0) {
double y = bufPtr[0];
for (int i=0; i < bufSize-1; ++i)
bufPtr[i] = bufPtr[i+1];
bufPtr[bufSize-1] = x;
return y;
}
return x;
}
void Delay::createBuffer(int sz) {
bufSize = sz;
bufPtr = new double[bufSize];
for (int i=0; i < bufSize; ++i)
bufPtr[i] = 0.0;
}
...
14Chương 8: Tiến tới tư duy hướng đối tượng
// SimProg3.cpp
#include 
#include 
#include 
#include "SimClass.h"
void main() {
double Ts = 0.5;
Sum sum;
Gain gain(2.0); 
Limiter limit(10,-10);
Integrator integrate(5,Ts);
Delay delay(1.0);
double r =1, y=0, e, u, ub; 
cout << "u\ty";
while (!kbhit()) {
e = sum(r,-y); // Sum block
u = gain(e); // Static Gain
ub= limit(u); // Limiter
y = integrate(ub);// Integrator output
y = delay(y);
cout << '\n' << u << '\t' << y;
cout.flush();
Sleep(long(Ts*1000));
}
}
15Chương 8: Tiến tới tư duy hướng đối tượng
Vấn ₫ề?
ƒ Khi số lượng các khối lớn lên thì quản lý thế nào?
ƒ Khi quan hệ giữa các khối phức tạp hơn (nhiều vào, 
nhiều ra) thì tổ chức quan hệ giữa các ₫ối tượng như
thế nào?
ƒ Làm thế nào ₫ể tạo và quản lý các ₫ối tượng một cách
₫ộng (trong lúc chương trình ₫ang chạy)?
ƒ Lập trình dựa ₫ối tượng mới mang lại ưu ₫iểm về
mặt an toàn, tin cậy, nhưng chưa mang lại ưu ₫iểm
về tính linh hoạt cần thiết của phần mềm => giá trị
sử dụng lại chưa cao.
16Chương 8: Tiến tới tư duy hướng đối tượng
8.6 Tư duy hướng ₫ối tượng
class FB {
public:
virtual void execute() = 0;
private:
virtual double* getOutputPort(int i=0) = 0;
virtual void setInputPort(double* pFromOutputPort, 
int i=0)= 0;
friend class FBD;
};
Chiều dữ liệu
y0
px1=&y0y1
px0px0
px1
px2
y0
Chiều liên kết
17Chương 8: Tiến tới tư duy hướng đối tượng
class Sum : public FB {
public:
Sum(bool plus_sign1 = true, bool plus_sign2 = false);
void execute();
private:
bool sign[2];
double *px[2];
double y;
double* getOutputPort(int i=0);
void setInputPort(double* pFromOutputPort, int i=0);
};
Sum::Sum(bool plus_sign1, bool plus_sign2): y(0) {
px[0] = px[1] = 0;
sign[0] = plus_sign1;
sign[1] = plus_sign2;
}
void Sum::execute() {
if (px[0] != 0) y = sign[0] ? *(px[0]) : - *(px[0]);
if (px[1] != 0) y += sign[1] ? *(px[1]) : - *(px[1]);
}
double* Sum::getOutputPort(int) {
return &y;
}
void Sum::setInputPort(double* pFromOutputPort, int i) {
if(i < 2)
px[i] = pFromOutputPort;
}
18Chương 8: Tiến tới tư duy hướng đối tượng
class Limiter: public FB {
public:
Limiter(double h=10.0, double l = -10.0);
void execute();
private:
double Hi, Lo;
double *px;
double y;
double* getOutputPort(int i=0);
void setInputPort(double* pFromOutputPort, int i=0);
};
Limiter::Limiter(double h, double l) : Hi(h), Lo(l), y(0), px(0) {
if (Hi < Lo) Hi = Lo; }
void Limiter::execute() { 
if (px != 0) {
y = *px;
if (y > Hi) y = Hi;
if (y < Lo) y = Lo;
}
}
double* Limiter::getOutputPort(int) {
return &y;
}
void Limiter::setInputPort(double* pFromOutputPort, int i) {
px = pFromOutputPort;
}
19Chương 8: Tiến tới tư duy hướng đối tượng
#include 
#include 
class FBD : public std::vector {
double Ts;
bool stopped;
public:
FBD(double ts = 0.5): Ts (ts > 0? ts : 1), stopped(true) {}
void addFB(FB* p) { push_back(p); }
void connect(int i1, int i2, int oport=0, int iport = 0) {
FB *fb1= at(i1), *fb2= at(i2);
fb2->setInputPort(fb1->getOutputPort(oport),iport);
}
void start();
~FBD();
};
FBD::~FBD() {
for (int i=0; i < size(); ++i)
delete at(i);
}
void FBD::start() {
while(!kbhit()) {
for (int i=0; i < size(); ++i)
at(i)->execute();
Sleep(long(Ts*1000));
}
}
20Chương 8: Tiến tới tư duy hướng đối tượng
#include 
#include "SimFB.h"
void main() {
double Ts=0.5;
FBD fbd(0.5);
fbd.addFB(new Step(1.0)); // 0
fbd.addFB(new Sum); // 1
fbd.addFB(new Gain(5.0)); // 2
fbd.addFB(new Limiter(10,-10)); // 3
fbd.addFB(new Integrator(5,Ts)); // 4
fbd.addFB(new Delay(0.0, Ts)); // 5
fbd.addFB(new Scope(std::cout)); // 6
for(int i=0; i < fbd.size()-1; ++i)
fbd.connect(i,i+1);
fbd.connect(5,1,0,1);
fbd.connect(3,6,0,1);
std::cout << "y\tu";
fbd.start();
}
21Chương 8: Tiến tới tư duy hướng đối tượng
Bài tập về nhà
ƒ Luyện tập lại trên máy tính các ví dụ từ phần 8.3 — 8.5
ƒ Dựa trên các ví dụ lớp ₫ã xây dựng ở phần 8.6 (Limiter, Sum), 
bổ sung các lớp còn lại (Step, Scope, Gain, Integrator, Delay)
ƒ Chạy thử lại chương trình ở phần 8.6 sau khi ₫ã hoàn thiện các
lớp cần thiết.
ƒ Bổ sung lớp Pulse ₫ể mô phỏng tác ₫ộng của nhiễu quá trình
(dạng xung vuông biên ₫ộ nhỏ, chu kỳ ₫ặt ₫ược). Mở rộng
chương trình mô phỏng như minh họa trên hình vẽ.
Gain Limiter IntegratorSum ScopeSumDelayStep
Pulse

File đính kèm:

  • pdfC8_Object_Oriented_Thinking.pdf
Tài liệu liên quan