Giáo trình Vi điều khiển 8051 Assembly - Chương 5: Các chế độ đánh địa chỉ của 8051
CPC có thể truy cập dữ liệu theo nhiều cách khác nhau. Dữ liệu có thể ở trong
một thanh ghi hoặc trong bộ nhớ hoặc được cho như một giá trị tức thời các cách
truy cập dữ liệu khác nhau được gọi là các chế độ đánh địa chỉ. Chương này chúng ta
bàn luận về các chế độ đánh địa chỉ của 8051 trong phạm vi một số ví dụ.
Các chế độ đánh địa chỉ khác nhau của bộ vi xử lý được xác định như nó được
thiết kế và do vậy người lập trình không thể đánh địa chỉ khác nhau là:
1. tức thời 2. Theo thanh ghi 3. Trực tiếp
4. gián tiếp qua thanh ghi 5. Theo chỉ số
g có thể dùng được để giữ địa chỉ của toán hạng nằm trong RAM khi sử dụng chế độ đánh địa chỉ này khi Ro và R1 được dùng như các con trỏ, nghĩa là khi chúng giữ các địa chỉ của các ngăn nhớ RAM thì trước chúng phải đặt dấu (@) như chỉ ra dưới đây. MOV A, @ R0 ; Chuyển nội dung của ngăn nhớ RAM có địa chỉ trong RO và A MOV @ R1, B ; Chuyển nội dung của B vào ngăn nhớ RAM có địa chỉ ở R1 Lưu ý rằng R0 cũng như R1 luôn có dấu “@” đứng trước. Khi không có dấu này thì đó là lệnh chuyển nội dung các thanh ghi Ro và R1 chứ không phải dữ liệu ngăn nhớ mà địa chỉ có trong R0 và R1. Ví dụ 5.3: Viết chương trình để sao chép giá trị 55H vào ngăn nhớ RAM tại địa chỉ 40H đến 44H sử dụng: a) Chế độ đánh địa chỉ trực tiếp b) Chế độ đánh địa chỉ gián tiếp thanh ghi không dùng vòng lặp c) Chế độ b có dùng vòng lặp Lời giải: MOV A, #55H ; Nạp A giá trị 55H MOV 40H, A ; Sao chép A vào ngăn nhớ RAM 40H MOV 41H, A ; Sao chép A vào ngăn nhớ RAM 41H MOV 42H, A ; Sao chép A vào ngăn nhớ RAM 42H MOV 43H, A ; Sao chép A vào ngăn nhớ RAM 43H MOV 44H, A ; Sao chép A vào ngăn nhớ RAM 44H b) MOV A, # 55H ; Nạp vào A giá trị 55H MOV R0, #40H ; Nạp con trỏ R0 = 40 H MOV @R0, A ; Sao chép A vào vị trí ngăn nhớ RAM do R0 chỉ đến INC R0 ; Tăng con trỏ. Bây gì R0 = 41H MOV @R0, A ; Sao chép A vào vị trí ngăn nhớ RAM do R0 chỉ INC R0 ; Tăng con trỏ. Bây giờ R0 = 42H MOV @R0,A ; Sao chép Avào vị trí ngăn nhớ RAM do R0 chỉ INC R0 ; Tăng con trỏ. Bây giờ R0 = 43H MOV @R0, A ; Sao chép A vào vị trí ngăn nhớ RAM do R0 chỉ MOV @R0, A ;Tăng con trỏ. Bây gờ R0 = 44H MOV @R0, A c) MOV A, # 55H ; Nạp vào A giá trị 55H MOV R0, #40H ; Nạp con trỏ địa chỉ ngăn nhớ RAM R0 = 40H MOV R2, #05 ; Nạp bộ đếm R2 = 5 AGAIN: MOV @R0, A ; Sao chép A vào vị trí ngăn nhớ RAM do Ro chi đến INC ; Tăng con trỏ Ro DJNZ R2, AGAIN ; Lặp lại cho đến khi bộ đếm = 0. 5.2.5 ưu điểm của chế độ đánh địa chỉ gián tiếp thanh ghi. Một trong những ưu điểm của chế độ đánh địa chỉ gián tiếp thanh ghi là nó làm cho việc truy cập dữ liệu năng động hơn so với chế độ đánh địa chỉ trực tiếp. Ví dụ 5.3 trình bày trường hợp sao chép giá trị 55H vào các vị trí ngăn nhớ của RAM từ 40H đến 44H . Lưu ý rằng lời giải b) có hai lệnh được lặp lại với một số lần. Ta có thể tạo ra vòng lặp với hai lệnh này như ở lời giải c). Lời giải c) là hiệu quả nhất và chỉ có thể khi sử dụng chế độ đánh địa chỉ gián tiếp qua thanh ghi. Vòng lặp là không thể trong chế độ đánh địa chỉ trực tiếp. Đây là sự khác nhau chủ yếu giữa đánh địa chỉ trực tiếp và gián tiếp. Ví dụ 5.4: Hãy viết chương trình để xoá 16 vị trí ngăn nhớ RAM bắt đầu tại địa chỉ 60H. Lời giải: CLR A ; Xoá A=0 MOV R1, #60H ; Nạp con trỏ. R1= 60H MOV R7, #16H ;Nạp bộ đếm, R7 = 1 6 (10 H dạng hex) AGAIN: MOV @R1, A ; Xoá vị trí ngăn nhớ RAM do R1 chỉ đến INC R1 ; Tăng R1 DJNZ R7, AGAiN ; Lặp lại cho đến khi bộ đếm = 0 Một ví dụ về cách sử dụng cả R0 và R1 trong chế độ đánh địa chỉ gián tiếp thanh ghi khi truyền khối được cho trong ví dụ 5.5. Ví dụ 5.5: Hãy viết chương trình để sao chép một khối 10 byte dữ liệu từ vị trí ngăn nhớ RAM bắt đầu từ 35H vào các vị trí ngăn nhớ RAM bắt đầu từ 60H Lời giải: MOV R0, # 35H ; Con trỏ nguồn MOV R1, #60H ; Con trỏ đích MOV R3, #10 ; Bộ đếm BACK: MOV A, @R0 ; Lấy 1byte từ nguồn MOV @R1, A ; Sao chép nó đến đích INC R0 ; Tăng con trỏ nguồn INC R1 ; Tăng con trỏ đích DJNZ R3, BACK ; Lặp lại cho đến khi sao chép hết 10 byte 5.2.6 Hạn chế của chế độ đánh địa chỉ gián tiếp thanh ghi trong 8051. Như đã nói ở phần trước rằng R0 và R1 là các thanh ghi duy nhất có thể được dùng để làm các con trỏ trong chế độ đánh địa chỉ gián tiếp thanh ghi. Vì R0 và R1 là các thanh ghi 8 bit, nên việc sử dụng của chúng bị hạn chế ở việc truy cập mọi thông tin trong các ngăn nhớ RAM bên trong (các ngăn nhớ từ 30H đến 7FH và các thanh ghi SFR). Tuy nhiên, nhiều khi ta cần truy cập dữ liệu được cắt trong RAM ngoài hoặc trong không gian mã lệnh của ROM trên chip. Hoặc là truy cập bộ nhớ RAM ngoài hoặc ROM trên chíp thì ta cần sử dụng thanh ghi 16 bit đó là DPTR. 5.2.7 Chế độ đánh địa chỉ theo chỉ số và truy cập bộ nhớ ROM trên chíp. Chế độ đánh địa chỉ theo chỉ số được sử dụng rộng rãi trongviệc truy cập các phân tử dữ liệu của bảng trong không gian ROM chương trình của 8051. Lệnh được dùng cho mục đích này là “Move A, @ A + DPTR”. Thanh ghi 16 bit DPTR là thanh ghi A được dùng để tạo ra địa chỉ của phân tử dữ liệu được lưu cất trong ROM trên chíp. Do các phân tử dữ liệu được cất trong không gian mã (chương trình) của ROM trên chip của 8051, nó phải dùng lệnh Move thay cho lệnh Mov (chủ C ở cuối lệnh là chỉ mà lệnh Code). Trong lệnh này thì nội dung của A được bổ xung vào thanh ghi 16 bit DPTR để tạo ra địa chỉ 16 bit của dữ liệu cần thiết. Xét ví dụ 5.6. Ví dụ 5.6: Giả sử từ “VSA” được lưu trong ROM có đĩa chỉ bắt đầu từ 200H và chương trình được ghi vào ROM bắt đầu từ địa chỉ 0. Hãy phân tích cách chương trình hoạt động và hãy phát biểu xem từ “VSA” sau chương trình này được cất vào đâu? Lời giải: ORG 0000H ; Bắt đầu đốt ROM tại địa chỉ 00H MOV DPTR, #200H ; Địa chỉ bẳng trình bày DPTR = 200H CLA A ; Xoá thanh ghi A (A = 0) MOVC A, @A + DPTR ; Lấy ký tự từ không gian nhớ chương trình MOV R0, A ; Cất nó vào trong R0 INC DPTR ; DPTR = 201, chỉ đến ký tự kế tiếp CLR A ; Xoá thanh ghi A MOVC A, @A + DPTR ; Lấy ký tự kế tiếp MOV R1, A ; Cất nó vào trong R1 INC DPTR ; DPTR = 202 con trỏ chỉ đến ký tự sau đó CLA A ; Xoá thanh ghi A MOVC A, @A + DPTR ; Nhận ký tự kế tiếp MOV R2, A ; Cắt nó vào R2 HERE: SJMP HERE ; Dừng lại ở đây. ; Dữ liệu được đốt trong không gian mã lệnh tại địa chỉ 200H ORG 200H MYDATA: DB “VSA” END ; Kết thúc chương trình ở trong chương trình nói trên thì các vị trí ngăn nhớ ROM chương trình 200H - 2002H có các nội dung sau: 200 = (‘U’); 201= (‘S’) và 202 = (‘A’). Chúng ta bắt đầu với DPTR = 200H và A = 0.Lệnh “MOVC A, @ A + DPTR chuyền nội dung của vị trí nhớ 200H trong ROM (200H + 0 = 200H) vào A. Thanh ghi A chứa giá trị 55H là giá trị mà ASC của ký tự “U”. ký tự này được cất vào R0. Kế đó, DPTR được tăng lên tạo thành DPTR = 201H. A lại được xoá về 0 để lấy nội dung của vị trí nhớ kế tiếp trong ROM là 201H chưa ký tự “S”. Sau khi chương trình này chạy ta có R0 = 55H, R1 = 53H và R2 = 41H là các mã ASCII của các ký tự “U”, “S” và “A”. Ví dụ 5.7: Giả sử không gian ROM bắt đầu từ địa chỉ 250H có chứa “America”, hãy viết chương trình để truyền các byte vào các vị trí ngăn nhớ RAM bắt đầu từ địa chỉ 40H. Lời giải ; (a) Phương pháp này sử dụng một bộ đếm ORG 000 MOV DPTR, # MYDATA ; Nạp con trỏ ROM MOV R0, #40H ; Nạp con trỏ RAM MOV R2, #7 ; Nạp bộ đếm BACK: CLR A ; Xoá thanh ghi A MOVC A, @A + DPTR ;Chuyển dữ liệu từ khong gian mã MOV R0, A ;Cất nó vào ngăn nhớ RAM INC DPTR ; Tăng con trỏ ROM INC R0 ; Tăng con trỏ RAM DJNZ R2, BACK ; Lặp lại cho đếnkhi bộ đếm = 0 HERE: SJMP HERE ;-------------- -- không gian mã của ROM trên chíp dùng để cất dữ liệu ORG 250H MYDATA: DB “AMER1CA” END ;(b) phương pháp này sử dụng ký tự null để kết thúc chuỗi ORG 000 MOV DPTR, #MYDATA ; Nạp con trỏ ROM MOV R0, #40 ; Nạp con trỏ RAM BACK: CLR A S ; Xoá thanh ghi A(A=0) MOVC A, @A + DPTR ; Chuyển dữ liệu từ không gian mã JZ HERE ; Thoát ra nếu có ký tự Null MOV DPTR, #MYDATA ; Cất nó vào ngădn nhớ của RAM INC @R0, A ; Tăng con trỏ ROM INC R0 ; Tăng con trỏ RAM SJM BACK ; Lặp lại HERE: SJMP HERE ;------------------ không gian mã của ROM trên chíp dùng để cất dữ liệu ORG 250H MYADTA: DB “AMER1CA”, 0 ; Ký tự Null để kết thúc chuỗi END Lưu ý đến cách ta sử dụng lệnh JZ để phát hiện ký tự NOLL khi kết thúc chuỗi 5.2.8 Bảng xắp xếp và sử dụng chế độ đánh địa chỉ theo chỉ số. Bảng xắp xế là khái niệm được sử dụng rất rộng rãi trong lập trình các bộ vi xử lý. Nó cho phép truy cập các phần từ của một bảng thường xuyên được sử dụng với thao tác cực tiểu. Như một ví dụ, hãy giả thiết rằng đối với một ứng dụng nhất định ta cần x2 giá trị trong phạm vi 0 đến 9. Ta có thể sử dụng một bảng xắp xếp thay cho việc tính toán nó. Điều này được chỉ ra trong ví dụ 5.8. Ví dụ 5.8 Hãy viết một chương trình để lấy x giá trị cống P1 và gửi giá trị x2 tới cổng P2 liên tục. Lời giải: ORG 000 MOV DPTR, #300 H ; Nạp địa chỉ bảng xắp xêlps MOV A, #0FFH ; Nạp A giá trị FFH MOV P1, A ; Đặt cổng P1 là đầu vào BACK: MOV A, P1 ; Lấy giá trị X từ P1 MOVC A, @A + DPTR ; Lấy giá trị X từ bảng XSDQ-TABLE MOV P2, A ; Xuất nó ra cổng P2 SJMP BACK ; Lặp lại ORG 300H XSQR - TABLE: DB 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 END Lưu ý bảng lệnh đầu tiên có thể thay bằng “MOV DPTR, #XSQR - TABLE”. Ví dụ 5.9: Trả lời các câu hỏi sau cho ví dụ 5.8. a) Hãy chỉ ra nội dung các vị trí 300 - 309H của ROM b) Tại vị trí nào của ROM có giá trị 6 và giá trị bào nhiêu c) Giả sử P1 có giá trị là 9 thì giá trị P2 là bao nhiêu (ở dạng nhị phân)? Lời giải: a) Các giá trị trong các ngăn nhớ 300H - 309H của ROM là: 300 = (00) 301 = (01) 302 = (04) 303 = (09) 304 = (10) 4 ´ 4 = 16 = 10 in hex 305 = (19) 5 ´ 5 = 25 = 19 in hex 306 = (24) 6 ´ 6 = 36 = 24H 307 = (31) 308 = (40) 309 = (51) b) vị trí chứa giá trị 306H và giá trị là 24H c) 01010001B là giá trị nhị phân của 51H và 81 (92 = 81) Ngoài việc sử dụng DPTR để truy cập không gian bộ nhớ ROM chương trình thì nó còn có thể được sử dụng để truy cập bộ nhớ ngoài nối với 8051 (chương 14). Một thanh ghi khác nữa được dùng trong chế độ đánh địa chỉ theo chỉ số là bộ đếm chương trình (AppendixA). Trong nhiều ví dụ trên đây thì lệnh MOV đã được sử dụng để đảm bảo đính rõ ràng, mặc dù ta có thể sử dụng bất kỳ lệnh nào khác chừng nào nó hỗ trợ cho chế độ đánh địa chỉ. Ví dụ lệnh “ADD A, @R0” sẽ cộng nội dung ngăn nhớ cho RO chỉ đến vào nội dung của thanh ghi A.
File đính kèm:
- Vi_dieu_khien_8051_ Assembly_05_CheDoanhDiaChi.pdf