Giáo trình Mạch điện tử - Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET - Trương Văn Tám
Do E-MOSFET chỉ phân cực theo kiểu tăng (VGS >0 ở kênh N và VGS <0 ở
kênh P), nên người ta thường dùng mạch phân cực bằng cầu chia điện thế hoặc hồi tiếp
điện thế.
Ở E-MOSFET kênh N khi VGS còn nhỏ hơn VGS(th) thì dòng thoát ID =0 mA,
khi VGS >VGS(th) thì ID được xác định bởi:
Hệ số k được xác định từ các thông số của nhà sản xuất. Thường nhà sản
xuất cho biết VGS(th) và một dòng ID(on) tương ứng với một điện thế VGS(on).
Suy ra:
Ðể xác định và vẽ đặc tuyến truyền người ta xác định thêm 2 điểm: một
điểm ứng với VGS
VGS >0. Thí dụ ta xem mạch phân cực hình 3.7. Trương Văn Tám III-4 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET - Ðặc tuyến truyền được xác định bởi: IDSS = 6mA VGS(off) =-3v - Ðường phân cực được xác định bởi: VGS = VG-RSID Vậy VGS(off) = 1.5volt - ID(mA). 0,15 (kΩ) Từ đồ thị hình 3.8 ta suy ra: IDQ =7.6mA VGSQ = 0.35v VDS = VDD - (RS+RD)ID = 3.18v 3.2.2 Phân cực bằng mạch hồi tiếp điện thế: Mạch cơ bản hình 3.9 - Ðặc tuyến truyền giống như trên. - Ðường phân cực xác định bởi: VGS = VDS = VDD - RDID (3.11) trùng với đường thẳng lấy điện. Vẽ hai đặc tuyến này ta có thể xác định được IDQ và VGSQ Trương Văn Tám III-5 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET 3.3 MẠCH PHÂN CỰC E-MOSFET: Do E-MOSFET chỉ phân cực theo kiểu tăng (VGS >0 ở kênh N và VGS <0 ở kênh P), nên người ta thường dùng mạch phân cực bằng cầu chia điện thế hoặc hồi tiếp điện thế. Ở E-MOSFET kênh N khi VGS còn nhỏ hơn VGS(th) thì dòng thoát ID =0 mA, khi VGS >VGS(th) thì ID được xác định bởi: Hệ số k được xác định từ các thông số của nhà sản xuất. Thường nhà sản xuất cho biết VGS(th) và một dòng ID(on) tương ứng với một điện thế VGS(on). Suy ra: Ðể xác định và vẽ đặc tuyến truyền người ta xác định thêm 2 điểm: một điểm ứng với VGS VGS(on) 3.3.1 Phân cực bằng hồi tiếp điện thế: Vì IG = 0 nên VD = VG và VGS = VDS VGS = VDS = VDD - RDID (3.13) Ta thấy đường phân cực trùng với đường thẳng lấy điện. Giao điểm của đường phân cực và đặc tuyến truyền là điểm điều hành Q. 3.3.2 Phân cực bằng cầu chia điện thế: Mạch này thông dụng hơn và có dạng như hình 3.13 Trương Văn Tám III-6 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET Từ mạch cổng nguồn ta có: VG = VGS - RSID ⇒ VGS = VG - RSID (3.14) Ðây là phương trình đường phân cực. Do điều hành theo kiểu tăng nên ta phải chọn R1, R2, RS sao cho: VGS >VS = RSID tức VGS >0 Giao điểm của đặc tuyến truyền và đường phân cực là điểm điều hành Q. Từ đồ thị ta suy ra IDQ và VGSQ và từ đó ta có thể tìm được VDS, VD, VS ... 3.4 MẠCH KẾT HỢP BJT VÀ FET: Ðể ổn định điểm tĩnh điều hành cho FET, người ta có thể dùng mạch phân cực kết hợp với BJT. BJT ở đây đóng vai trò như một nguồn dòng điện. Mạch phân cực cho BJT thường dùng là mạch cầu chia điện thế hay ổn định cực phát. Thí dụ ta xác định VD và VC của mạch hình 3.15. Trương Văn Tám III-7 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET Ðể ý là: βRE = 288k >10R2 = 240k nên ta có thể áp dụng phương pháp tính gần đúng: Ta có thể giải phương trình trên để tìm VGS. Ðơn giản hơn ta dùng phương pháp đồ thị. Cách vẽ đặc tuyến truyền như ở phần trước. Từ đồ thị ta suy ra: VGS=-3.7volt. Từ đó: VC = VB - VB GS = 7.32v Người ta cũng có thể dùng FET như một nguồn dòng điện để ổn định phân cực cho BJT như ở hình 3.17. Sinh viên thử phân giải để xác định VC, VD của mạch. 3.5 THIẾT KẾ MẠCH PHÂN CỰC DÙNG FET: Công việc thiết kế mạch phân cực dùng FET thật ra không chỉ giới hạn ở các điều kiện phân cực. Tùy theo nhu cầu, một số các điều kiện khác cũng phải được để ý tới, nhất là việc ổn định điểm tĩnh điều hành. Từ các thông số của linh kiện và dạng mạch phân cực được lựa chọn, dùng các định luật Kirchoff, định luật Ohm... và phương trình Schockley hoặc đặc tuyến truyền, đường phân cực... để xác định các thông số chưa biết. Trương Văn Tám III-8 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET Tổng quát trong thực hành, để thiết kế một mạch phân cực dùng FET, người ta thường chọn điểm điều hành nằm trong vùng hoạt động tuyến tính. Trị số tốt nhất thường được chọn là hoặc . Ngoài ra, VDS cũng không được vượt quá trị số tối đa mà FET có thể chịu đựng được. Thí dụ: Trong mạch điện hình 3.18a, chọn ID = 2.5 mA, VD = 12v. Dùng FET có IDSS = 6mA, VGS(off) =-3v. Xác định RD và RS. Từ đặc tuyến truyền ⇒ Khi ID = 2.5mA thì VGS=-1v. Vậy: VGS=-RSID (RS =-VGS/ID =0.4kΩ (chọn RS = 390Ω) 3.6 TÍNH KHUẾCH ÐẠI CỦA FET VÀ MẠCH TƯƠNG ÐƯƠNG XOAY CHIỀU TÍN HIỆU NHỎ: Người ta cũng có thể dùng FET để khuếch đại tín hiệu nhỏ như ở BJT. JFET và DE-MOSFET khi điều hành theo kiểu hiếm có dạng mạch giống nhau. Ðiểm khác nhau chủ yếu ở JFET và DE-MOSFET là tổng trở vào của DE-MOSFET lớn hơn nhiều (sinh viên xem lại giáo trình linh kiện điện tử). Trong lúc đó ở BJT, sự thay đổi dòng điện ngõ ra (dòng cực thu) được điều khiển bằng dòng điện ngõ vào (dòng cực nền), thì ở FET, sự thay đổi dòng điện ngõ ra (dòng cực thoát) được điều khiển bằng một điện thế nhỏ ở ngõ vào (hiệu thế cổng nguồn VGS). Ở BJT ta có độ lợi dòng điện β thì ở FET có độ truyền dẫn gm. Với tín hiệu nhỏ, mạch tương đương xoay chiều của FET như hình 3.19a, trong đó rπ là tổng trở vào của FET. Trương Văn Tám III-9 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET Ở JFET, rπ khoảng hàng chục đến hàng trăm MΩ, trong lúc ở MOSFET thường ở hàng trăm đến hàng ngàn MΩ. Do đó, thực tế người ta có thể bỏ rπ trong mạch tương đương (hình 3.19b). rd là tổng trở ra của FET, được định nghĩa: tức tùy thuộc vào điểm điều hành, rd có thể thay đổi từ vài chục kΩ đến vài chục MΩ. rd và gm thường được nhà sản xuất cho biết dưới dạng rd=1/yos; gm=yfs ở một điểm điều hành nào đó. Nếu trong mạch thiết kế, RD (điện trở nối từ cực thoát lên nguồn) không lớn lắm (vài kΩ), ta có thể bỏ rd trong mạch tương đương (hình 3.19c). 3.7 MẠCH KHUẾCH ÐẠI DÙNG JFET HOẶC DE- MOSFET ÐIỀU HÀNH THEO KIỂU HIẾM: 3.7.1 Mạch cực nguồn chung: Có thể dùng mạch phân cực cố định (hình 3.20), mạch phân cực tự động (hình 3.21) hoặc mạch phân cực bằng cầu chia điện thế (hình 3.22). Mạch tương đương xoay chiều vẽ ở hình 3.23. Trương Văn Tám III-10 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET Trong đó Ri=RG ở hình 3.20 và 3.21; Ri=R1 //R2 ở hình 3.22. Phân giải mạch ta tìm được: - Tổng trở ra: Z0 = rd //RD (3.17) 3.7.2 Ðộ lợi điện thế của mạch khuếch đại cực nguồn chung với điện trở RS : Giả sử ta xem mạch hình 3.24 với mạch tương đương hình 3.25. Trương Văn Tám III-11 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET 3.7.3 Mạch khuếch đại cực thoát chung hay theo nguồn(Common Drain or source follower) Người ta có thể dùng mạch phân cực tự động hoặc phân cực bằng cầu chia điện thế như hình 3.26 và hình 3.27 Trương Văn Tám III-12 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET Mạch tương đương xoay chiều được vẽ ở hình 3.28. Trong đó: Ri=RG trong hình 3.26 và Ri = R1 //R2 trong hình 3.27. - Ðộ lợi điện thế: Ta có: v0 = (gmvgs)( RS //rd) Vgs = vi - v0 - Tổng trở vào Zi = Ri (3.20) - Tổng trở ra: Ta thấy RS song song với rd và song song với nguồn dòng điện gmvgs. Nếu ta thay thế nguồn dòng điện này bằng một nguồn điện thế nối tiếp với điện trở 1/gm và đặt nguồn điện thế này bằng 0 trong cách tính Z0, ta tìm được tổng trở ra của mạch: Z0 = RS //rd // 1/gm (3.21) 3.7.4 Mạch khuếch đại cực cổng chung: ( Common-gate circuit) Mạch căn bản và mạch tương đương xoay chiều như hình 3.29a và 3.29b. Trương Văn Tám III-13 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET 3.8 MẠCH KHUẾCH ÐẠI DÙNG E-MOSFET: Do E-MOSFET chỉ điều hành theo kiểu tăng, nên thường được phân cực bằng cầu chia điện thế hoặc hồi tiếp điện thế. Thí dụ: Ta xem mạch hình 3.30a có mạch tương đương xoay chiều hình 3.30b. Trương Văn Tám III-14 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET Thông thường gmRG >>1 nên AV = -gm(RG //rd //RD) Nhưng RG thường rất lớn nên AV ≠ -gm(rd //RD) (3.25) - Xác định giá trị của gm: gm thường được nhà sản xuất cho biết ở một số điều kiện phân cực đặc biệt, hay có thể được tính từ điểm tĩnh điều hành. Hoặc gm có thể được tính một cách gần đúng từ công thức: gm = 2k[VGS - VGS(th)] với k có trị số trung bình khoảng 0.3mA/V2. - Tổng trở vào: - Tổng trở ra: Z0 = RD //rd //RG (3.27) 3.9 THIẾT KẾ MẠCH KHUẾCH ÐẠI DÙNG FET: Vấn đề thiết kế mạch khuếch đại dùng FET ở đây giới hạn ở chỗ tìm các điều kiện phân cực, các trị số của linh kiện thụ động để có được độ lợi điện thế mong muốn. Thí dụ: Thiết kế mạch khuếch đại phân cực tự động dùng JFET như hình 3.31 sao cho độ lợi điện thế bằng 10. Trương Văn Tám III-15 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET RG nên chọn khá lớn để không làm giảm tổng trở vào của mạch. Thí dụ ta có thể chọn RG= 10MΩ. BÀI TẬP CUỐI CHƯƠNG III Bài 1: Xác định ID, VDS, VD và VS của mạch hình 3.32 Bài 2: Ở mạch hình 3.33, cho VDS = 8v. Xác định ID, VD, VS, VGS. Bài 3: Hãy thiết kế một mạch phân cực tự động dùng JFET có IDSS=8mA; VGS(off)=-6v và điểm điều hành Q ở IDQ = 4mA với nguồn cung cấp VDD= +14v. Chọn RD = 3RS. Bài 4: Thiết kế một mạch phân cực bằng cầu chia điện thế dùng DE-MOSFET với IDSS = 10mA, VGS(off) = -4v có điểm điều hành Q ở IDQ = 2.5mA và dùng nguồn cấp điện VDD=24v. Chọn VG=4v và RD=2.5RS với R1=22MΩ. Bài 5: Tính Zi, Z0 và AV của mạch điện hình 3.34 Trương Văn Tám III-16 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET Bài 6: Xác định giá trị của RD và RS trong mạch điện hình 3.35 khi được phân cực ở VGSQ = 1/2VGS(off) và VDSQ = 1/2VDD. Tính độ lợi điện thế trong trường hợp này. Bài 7: Thiết kế mạch khuếch đại dùng JFET có dạng như hình 3.36, sao cho độ lợi điện thế là 8. Ðể giới hạn bước thiết kế, cho VGSQ gần trị số tối đa của gm, thí dụ như ở VGS(off)/4. Bài 8: Thiết kế mạch khuếch đại dùng JFET có dạng hình 3.37 sao cho độ lợi điện thế bằng 5. Chọn VGSQ=VGS(off)/4. Trương Văn Tám III-17 Mạch Điện Tử Chương 3: Mạch phân cực và khuếch đại tín hiệu nhỏ dùng FET Trương Văn Tám III-18 Mạch Điện Tử
File đính kèm:
- giao_trinh_mach_dien_tu_chuong_3_mach_phan_cuc_va_khuech_dai.pdf