Giáo trình C - Chương 7: Một số vấn đề về đa thức và hàm số

Ph-ơng pháp tính là môn học về những lí luận cơ bản

và các ph-ơng pháp giải gần đúng,cho ra kết quả bằng số của các bài toán th-ờng gặp trong

toán học cũng nh-trong kĩ thuật.

 Chúng ta thấy rằng hầu hết các bài toán trong toán học nh-giải các ph-ơng trình đại

số hay siêu việt,các hệ ph-ơng trình tuyến tính hay phi tuyến,các ph-ơng trình vi phân

th-ờng hay đạo hàm riêng,tính các tích phân,. th-ờng khó giải đúng đ-ợc,nghĩa là khó tìm

kết quả d-ới dạng các biểu thức.

 Một số bài toán có thể giải đúng đ-ợc nh-ng biểu thức kết quả lại cồng kềnh,phức

tạp khối l-ợng tính toán rất lớn.Vì những lí do trên,viẹc giải gần đúng các bài toán là vô

cùng cần thiết.

 Các bài toán trong kĩ thuật th-ờng dựa trên số liệu thực nghiệm và các giả thiết gần

đúng.Do vậy việc tìm ra kết quả gần đúng với sai số cho phép là hoàn toàn có ý nghĩa thực

tế.

pdf10 trang | Chuyên mục: C/C++ | Chia sẻ: dkS00TYs | Lượt xem: 3752 | Lượt tải: 1download
Tóm tắt nội dung Giáo trình C - Chương 7: Một số vấn đề về đa thức và hàm số, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
ó thể diễn đạt nó bằng toán 
học,ng−ời ta đ−a ra một số giả thiết không hoàn toàn chính xác để nhận đ−ợc ph−ơng trình 
trên. 
 Vì vậy nếu gọi y1 là giá trị đúng của y thì khi đó y ≠ y1. Giá trị | y - y1| đ−ợc gọi là sai 
số giả thiết của bài toán. 
 Do x là số liệu ban đầu của bài toán,thu đ−ợc từ đo l−ờng,thí nghiệm nên nó chỉ là giá 
trị gần đúng.Sai số này đ−ợc gọi là sai số của các số liệu ban đầu. 
 Để giải gần đúng ph−ơng trình trên ta th−ờng thay B bằng C hay x bằng t để ph−ơng 
trình đơn giản hơn và có thể giải đ−ợc.Bằng cách đó ta tìm đ−ợc y2 gần đúng với y.Giá trị | 
y2 - y| đ−ợc gọi là sai số ph−ơng pháp của bài toán. 
 Cuối cùng khi thực hiện các phép tính ta th−ờng thu gọn các kết quả trung gian hay 
kết quả cuối cùng nên đáp số của bài toán là y3.Giá trị | y3 - y | là sai số tính toán. 
 Trong phần này chúng ta quan tâm tới sai số ph−ơng pháp. 
4. Xấp xỉ và hội tụ : Xét bài toán 
 y = Bx 
 Giả sử y là nghiệm đúng của bài toán mà ta ch−a biết.Bằng ph−ơng pháp nào đó ta 
lấy y1 thay cho y và khi đó y1 gọi là xấp xỉ thứ nhất của nghiệm và viết : 
 y1 ≈ y 
Cũng bằng ph−ơng pháp t−ơng tự,ta xây dựng đ−ợc một dãy các xấp xỉ y1,y2,y3,..yn.Nếu ta 
có : 
n
ny y→∞
=lim
thì ta nói dãy xấp xỉ hội tụ tới nghiệm y. 
Đ2. Tính giá trị của đa thức theo sơ đồ Horner 
1. Sơ đồ Horner : Giả sử chúng ta cần tìm giá trị của một đa thức tổng quát dạng : 
 P(x) = a0x
n + a1x
n - 1 + a2x
n - 2 +....+ an (1) 
tại một trị số x nào đó. Trong (1) các hệ số ai là các số thực đã cho. Chúng ta viết lại (1) theo 
thuật toán Horner d−ới dạng : 
 P(xo) = (...((a0x + a1)x+ a2x)+...+ an -1 )x + an (2) 
 Từ (2) ta nhận thấy : 
 P0 = a0 
 P1 = P0x + a1 
 P2 = P1x + a2 
 P3 = P2x + a3 
 .................. 
 P(x) = Pn = Pn-1x + an 
 Tổng quát ta có : 
 Pk = Pk-1x + ak với k =1,2...n ; P0 = a0 
80
 Do chúng ta chỉ quan tâm đến trị số của Pn nên trong các công thức truy hồi về sau 
chúng ta sẽ bỏ qua chỉ số k của P và viết gọn P := Px + ak với k = 0...n.Khi ta tính tới k = n 
thì P chính là giá trị cần tìm của đa thức khi đã cho x. Chúng ta thử các b−ớc tính nh− sau : 
 Ban đầu P = 0 
 B−ớc 0 k = 0 P = ao 
 B−ớc 1 k = 1 P = aox + a1 
 B−ớc 2 k = 2 P = (aox + a1)x + a2 
 ................................. 
 B−ớc n-1 k = n - 1 P = P(xo) = (...((aox + a1)x+a2x)+...+an-1)x 
 B−ớc n k = n P = P(xo) = (...((aox + a1)x+a2x)+...+an-1)x + an 
Sau đây là ch−ơng trình thực hiên thuật toán trên 
Ch−ơng trình 7-1 
#include 
#include 
#define m 10 
void main(void) 
 { 
 int k,n; 
 float p,x; 
 float a[m]; 
 clrscr(); 
 printf("\nCho bac cua da thuc n = "); 
 scanf("\%d",&n); 
 printf("Vao cac he so a:\n"); 
 for (k=1;k<=n+1;k++) 
 { 
 printf("a[%d] = ",k-1); 
 scanf("%f",&a[k]); 
 }; 
 printf("Cho gia tri x = "); 
 scanf("%f",&x); 
 p=0.0; 
 for (k=1;k<=n+1;k++) 
 p=p*x+a[k]; 
 printf("Tri so cua da thuc P tai x =%.2f la :%.5f",x,p); 
 getch(); 
 } 
2. Sơ đồ Horner tổng quát : Giả sử chúng ta có đa thức : 
Pn(x) = a0x
n + a1x
n - 1 + a2x
n - 2 +....+ an (1) 
Khai triển Taylor của đa thức tại x = xo có dạng : 
n
0
0
)n(
2
0
0
0
0
0nn )xx(!2
)x(P
)xx(
!2
)x(P
)xx(
!1
)x(P
)x(P)x(P −+⋅⋅⋅+−′′+−′+= (2) 
Mặt khác chúng ta có thể biến đổi đa thức về dạng : 
 Pn(x) = (x - xo)Pn-1(x) + Pn(xo) (3) 
81
Trong đó Pn-1(x) là đa thức bậc n-1 và có dạng : 
 Pn-1 (x) = box
n-1 + bo-1x
n - 2 + b2x
n - 3 +....+ bn-1 (4) 
Thuật toán để tìm các hệ số nhận đ−ợc bằng cách so sánh (1) và (3) : 
 bo = ao 
 bi = ai + bi-1xo 
 bn = Pn(xo) 
So sánh (2) và (3) ta có : 
n
0
0
)n(
2
0
0
0
0
0n0n01n0
)xx(
!2
)x(P
)xx(
!2
)x(P
)xx(
!1
)x(P
)x(P)x(P)x(P)xx(
−+⋅⋅⋅+
−′′+−′+=+− −
hay : 
n
0
0
)n(
2
0
0
0
0
1n0 )xx(!2
)x(P
)xx(
!2
)x(P
)xx(
!1
)x(P
)x(P)xx( −+⋅⋅⋅+−′′+−′=− − 
và khi chia hai vế cho (x - x0) ta nhận đ−ợc : 
 1n0
0
)n(
0
00
1n )xx(!2
)x(P
)xx(
!2
)x(P
!1
)x(P
)x(P −− −+⋅⋅⋅+−′′+′= (5) 
So sánh (4) và (5) ta nhận đ−ợc kết quả : 
!1
)x(P
)x(P 001n
′=− 
Trong đó Pn-1(x) lại có thể phân tích giống nh− Pn(x) dạng (3) để tìm ra Pn-1(xo).Quá 
trình này đ−ợc tiếp tục cho đến khi ta tìm hết các hệ số của chuỗi Taylor của Pn(x) 
Tổng quát thuật toán thể hiện ở bảng sau : 
 Pn(x) ao a1 a2 a3 ... an-1 an 
 x = xo 0 boxo b1xo b2xo bn-2xo bn-1xo 
 Pn-1(x) bo b1 b2 b3 ... bn-1 bn = Pn(xo) 
Để hiểu rõ hơn chúng ta lấy một ví dụ cụ thể sau : Khai triển đa thức sau tại x0= 2 
 P(x) = x5 - 2x4 + x3 -5x + 4 
Ta lập bảng tính sau : 
 1 -2 1 0 -5 4 
 2 0 2 0 2 4 2 
 1 0 1 2 -1 2 = P(2)/0! 
 2 0 2 4 10 24 
 1 2 5 12 23 = P'(2)/1! 
 2 0 2 8 26 
 1 4 13 38 = P"(2)/2! 
 2 0 2 12 
 1 6 25 = P"'(2)/3! 
 2 0 2 
 1 8 = P""(2)/4! 
82
 2 0 
 1 = P""'(2)/4! 
Nh− vậy : 
 Pn(x) = (x-2)
5 + 8(x-2)4 +25(x-2)3 + 38(x-2)2 + 23(x-2) + 2 
 Ch−ơng trình sau dùng để xác định các hệ số của chuỗi Taylor của đa thức P(x) tại x0 
= 2. 
Ch−ơng trình 7-2 
#include 
#include 
#define m 10 
void main(void) 
 { 
 float a[m],b[m],c[m]; 
 int n,i,j,k; 
 float x; 
 clrscr(); 
 printf("Cho bac cua da thuc n = "); 
 scanf("%d",&n); 
 printf("Cho gia tri x = "); 
 scanf("%f",&x); 
 printf("Vao cac he so a\n"); 
 for (k=n;k>=0;k--) 
 { 
 printf("a[%d] = ",n-k); 
 scanf("%f",&a[k]); 
 } 
 printf("\n"); 
 b[n] = a[n]; 
 c[n] = a[n]; 
 for (k=0;k<=n-1;k++) 
 { 
 for (i=n-1;i>=k;i--) 
 b[i] = b[i+1]*x + a[i]; 
 c[k] = b[k]; 
 for (j=n;j>=k+1;j--) 
 a[j] = b[j]; 
 } 
 printf("\nSo do Horner tong quat"); 
 printf("\nKhai trien tai x = %.4f\n",x); 
 for (k=n;k>=0;k--) 
 printf("%10.4f\t",c[k]); 
 getch(); 
 } 
83
Đ3. Các phép tính trên đa thức 
1. Phép cộng hai đa thức : Giả sử chúng ta có hai đa thức A(x) bậc n và B(x) bậc m với 
n>m. Khi cộng hai đa thức này,chúng ta cộng lần l−ợt các hệ số cùng bậc của chúng với 
nhau.Ta có ch−ơng trình sau : 
Ch−ơng trình 7-3 
#include 
#include 
#define t 10 
void main(void) 
 { 
 int k,n,m; 
 float a[t],b[t],c[t]; 
 clrscr(); 
 printf("Cho bac cua da thuc A n = "); 
 scanf("%d",&n); 
 printf("Vao cac he so a\n"); 
 for (k=1;k<=n+1;k++) 
 { 
 printf("a[%d] = ",k-1); 
 scanf("%f",&a[k]); 
 } 
 printf("Cho bac cua da thuc B m = "); 
 scanf("%d",&m); 
 printf("Vao cac he so b\n"); 
 for (k=1;k<=m+1;k++) 
 { 
 printf("b[%d] = ",k-1); 
 scanf("%f",&b[k]); 
 } 
 printf("\n"); 
 for (k=1;k<=n+1;k++) 
 if (k<=n-m) 
 c[k] = a[k]; 
 else 
 c[k] = a[k] + b[k-n+m]; 
 printf("Cac he so cua da thuc tong C la :\n"); 
 for (k=1;k<=n+1;k++) 
 printf("%.4f\t",c[k]); 
 getch(); 
 } 
2. Phép nhân hai đa thức : Để thấy rõ thuật toán xác định các hệ số của đa thức C(x) là kết 
quả của phép nhân hai đa thức A(x) và B(x) ta cho một ví dụ cụ thể : 
84
 A(x) = aox
5 + a1x
4 + a2x
3
 + a3x
2+ a4x + a5 
 B(x) = box
3 + b1x
2 + b2x
 + b3 
 C(x) = A(x).B(x) 
 = aobo x
8 + (aob1 + a1bo)x
7 +( aob2 + a1b1 + a2bo)x
6 + (aob3 + a1b2 + a2b1+ a3bo )x
5 
+ (a1b3 + a2b2 + a3b1 + a4bo)x
4 + (a2b3 + a3b2 + a4b1 + a5bo)x
3 + ( a3b3 + a4b2 + a5b1)x
2 
+ a5b2x + a5b3 
Các hệ số của đa thức kết quả là : 
 Co = aobo 
 C1 = aob1 + a1bo 
 C2 = aob2 + a1b1 + a2bo 
 C3 = aob3 + a1b2 + a2b1+ a3bo 
 C4 = a1b3 + a2b2 + a3b1 + a4bo 
 C5 = a2b3 + a3b2 + a4b1 + a5bo 
 C6 = a3b3 + a4b2 + a5b1 
 C7 = a5b2 
 C8 = a5b3 
 Ta nhận thấy là hệ số Ck của C(x) là tổng các tích các hệ số của đơn thức bậc i của A(x) và 
bậc (k-i) của B(x). Chỉ số i = 0 khi k m+1.Chỉ số j 
 = k khi k n + 1. Ch−ơng trình tính tích hai đa thức : 
Ch−ơng trình 7-4 
#include 
#include 
#define t 10 
void main() 
 { 
 int k,n,m,l,i,j,p; 
 float a[t],b[t],c[2*t]; 
 clrscr(); 
 printf("Cho bac cua da thuc A n = "); 
 scanf("%d",&n); 
 printf("Vao cac he so a\n"); 
 for (k=1;k<=n+1;k++) 
 { 
 printf("a[%d] = ",k-1); 
 scanf("%f",&a[k]); 
 } 
 printf("Cho bac cua da thuc B m = "); 
 scanf("%d",&m); 
 printf("Vao cac he so b\n"); 
 for (k=1;k<=m+1;k++) 
 { 
 printf("b[%d] = ",k-1); 
 scanf("%f",&b[k]); 
 } 
 printf("\n"); 
 l=n+m; 
85
 for (k=1;k<=l+1;k++) 
 { 
 if (k<=(n+1)) 
 j=k; 
 else 
 j=n+1; 
 if (k<=(m+1)) 
 p=1; 
 else 
 p= k-m; 
 c[k]=0; 
 for (i=p;i<=j;i++) 
 c[k] = c[k] + a[i]*b[k-i+1]; 
 } 
 printf("Cac he so cua da thuc tich C voi bac %d la :\n",l); 
 for (k=1;k<=l+1;k++) 
 printf("%.4f\t",c[k]); 
 getch(); 
 } 
3. Chia hai đa thức : Giả sử ta có hai đa thức là An(x) và Bm(x) với n ≥ m.Th−ơng hai đa 
thức này là : 
)x(B
)x(R
)x(Q
)x(B
)x(A
m
1m
mn
m
n −− += 
Ch−ơng trình sau thực hiện việc chia 2 đa thức : 
 Ch−ơng trình 7-5 
#include 
#include 
#include 
#define t 10 
void main() 
 { 
 int k,n,m,l,i,j,jp; 
 float a[t],b[t],q[t],r[t],epsi; 
 clrscr(); 
 printf("Cho bac cua da thuc A n = "); 
 scanf("%d",&n); 
 printf("Vao cac he so a\n"); 
 for (k=1;k<=n+1;k++) 
 { 
 printf("a[%d] = ",k-1); 
 scanf("%f",&a[k]); 
 } 
 printf("\n"); 
 printf("Cho bac cua da thuc B m = "); 
 scanf("%d",&m); 
86
 printf("Vao cac he so b\n"); 
 for (k=1;k<=m+1;k++) 
 { 
 printf("b[%d] = ",k-1); 
 scanf("%f",&b[k]); 
 } 
 printf("\n"); 
 printf("Cho gia tri sai so epsilon epsi = "); 
 scanf("%f",&epsi); 
 if ((m+1)>1) 
 { 
 l=n-m+1; 
 for (i=0;i<=t;i++) 
 r[i]=a[i]; 
 j=n; 
 for (k=1;k<=l;k++) 
 { 
 q[k]=r[1]/b[1]; 
 for (i=1;i<=j;i++) 
 if ((i<m+1)) 
 r[i]=r[i+1]-q[k]*b[i+1]; 
 else 
 r[i]=r[i+1]; 
 j=j-1; 
 } 
 while ((abs(r[i])0)) 
 { 
 for (i=1;i<=j;i++) 
 r[i]=r[i+1]; 
 j=j-1; 
 } 
 if (abs(r[1])<epsi) 
 r[1]=0.0; 
 jp=j+1; 
 } 
 else 
 { 
 l=n+1; 
 for (k=1;k<=l;k++) 
 q[k]=a[k]/b[1]; 
 jp=1; 
 r[1]=0.0; 
 } 
 printf("\n"); 
 printf("Cac he so cua thuong Q(x) bac %d la : ",l); 
 for (k=1;k<=l;k++) 
 printf("%.3f\t",q[k]); 
 printf("\n"); 
 printf("Cac he so cua phan du R(x) bac %d la : ",jp-1); 
 for (k=1;k<=jp;k++) 
87
 printf("%.3f",r[k]); 
 getch(); 
 } 

File đính kèm:

  • pdfGiao_Trinh_C_Chuong7.pdf
Tài liệu liên quan