Fundamentals of Electric Circuit - Chapter 3: Methods of analysis

I. Introduction.

II. Nodal analysis.

III. Mesh analysis.

VI. Nodal versus mesh analysis.

 In chapter 2, we have studied the fundamental laws of circuit theory (Ohm’s law

and Kirchhoff’s laws).

 This chapter will apply these laws to develop 02 powerful techniques for circuit

analysis:

 Nodal analysis: Base on KCL

 Mesh analysis: Base on KVL

 

pdf39 trang | Chuyên mục: Mạch Điện Tử | Chia sẻ: tuando | Lượt xem: 434 | Lượt tải: 0download
Tóm tắt nội dung Fundamentals of Electric Circuit - Chapter 3: Methods of analysis, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
    
 Mesh II: i i i i i
2 1 2 3 0
2( ) 8( ) 10 0    
 Set of equations:
2Ω
8Ω4Ω
10i0
i2
i i i
1 2 3
6 2 4 20  
i i
0 3

 Mesh III:
i i i
1 2 3
2 10 18 0

   

i i i i i
3 1 3 2 3
4( ) 8( ) 6 0     i i i
1 2 3
4 8 18 0   
i i i
i i i
i i i
1 2 3
1 2 3
1 2 3
6 2 4 20
2 10 18 0
4 8 18 0
  

   
    
i A
i A
i A
1
2
3
3,21
9,64
5
 

  
  
i A
0
5  
Fundamentals of Electric Circuits – Viet Son Nguyen - 2011
R 1 R 3
1 0 V
R 2
28
III.2. Mesh analysis with current sources
Chapter 3: Methods of analysis
6Ω
 In general, the presence of the current sources
reduces the number of equations in the mesh
analysis.
i1
 A current source exists only in one mesh mesh current = current source
3Ω4Ω
5A
i2
i i i
i A
1 1 2
2
4 6( ) 10
5
  

 
 Consider two cases:
i A
i A
1
2
2
5
 
 
 
 A current source exists between two meshes  create a super-mesh by
excluding the current source and any elements connected in series with it
A super-mesh results when two meshes have a (dependent or independent) 
current source in common.
Fundamentals of Electric Circuits – Viet Son Nguyen - 2011
R 1
R 3
R 3
2 0 V
R 2
29
III.2. Mesh analysis with current sources
Chapter 3: Methods of analysis
4Ω
Ex 1: Find the branch currents using mesh analysis.
0
10Ω
2Ω
6A
i2
i i i
1 2 2
20 6 10 4 0    
 Create a super-mesh.
6Ω
i1
i1
i2
 There is a current source 6-A between two mesh.
4Ω
10Ω6Ω
R 1
R 3
R 3
2 0 V
i2i1
 Applying KVL to the super-mesh gives:
i i
1 2
6 14 20  
 Applying KCL to the node in the current source branch :
i i
2 1
6 
 Note that:
 The current source in the super-mesh provides
the constraint equation to solve for the mesh
currents
 A super-mesh has no current of its own
 A super-mesh requires the using of both KVL
and KCL
Fundamentals of Electric Circuits – Viet Son Nguyen - 2011
R 1
R 3
R 4
R 2
1 0 V
R 5
30
III.2. Mesh analysis with current sources
Chapter 3: Methods of analysis
Ex 2: Find i1, i4 using mesh analysis.
Q
3i0
6Ω
5A
i i i i i
1 3 3 4 2
2 4 8( ) 6 0    
2Ω
i2
i2
 There are two super-meshes
8Ω
2Ω4Ω
i i
2 1
5 
i3
P
i1
i0
i4i3i2
i1
 Two super-meshes intersect form a
larger super-mesh
 Applying KVL to the larger super-
mesh:
i i i i
1 2 3 4
3 6 4 0    
 Applying KCL to the node P:
 Applying KCL to the node Q: i i i
2 3 0
3  i i i i i0 4
2 3 4
3
  
 Applying KVL in mesh 4: i i i4 4 32 8( ) 10 0    i i4 35 4 5   
 These equations give:
i A
1
7.5  i A
2
2.5 
i A
3
3,93 i A
4
2.14
Fundamentals of Electric Circuits – Viet Son Nguyen - 2011
R 1
R 3
R 4R 2
6 V
R 5
31
III.2. Mesh analysis with current sources
Chapter 3: Methods of analysis
Ex 3.3: Find i1, i2, i3 using mesh analysis.
4Ω
i i i i i
1 3 2 3 2
6 2( ) 4( ) 8 0      
2Ω
 Applying KVL to super-mesh:
8Ω
2Ω
1Ω
A
i2
i3
i1
 Applying KCL to node A gives:
 We have a set of equations:
3A
i i i
1 2 3
2 12 6 6   
i i
1 2
3 
 Applying KCL to the mesh III:
i i i i i
3 1 3 2 3
2( ) 4( ) 2 0     i i i
1 2 3
2 4 8 0   
i i i
i i
i i i
1 2 3
1 2
1 2 3
2 12 6 6
3
2 4 8 0
  

 
   
i A
i A
i A
1
2
3
3,47
0,47
1,11


 
 
Fundamentals of Electric Circuits – Viet Son Nguyen - 2011
32
III.3. Mesh analysis by inspection
Chapter 3: Methods of analysis
 In general, if a circuit (with only independent voltage sources) has N meshes,
the mesh current equations can be expressed in terms of the resistances as:
N
N
N N NN N N
R R R i v
R R R i v
R R R i v
11 12 1 1 1
21 22 2 2 2
1 2
...
...
...
     
     
     
     
     
     
where:
 R i v
 Rkk : Sum of the resistances in mesh k.
 Rkj = Rjk : Negative of the sum of the resistances in common with meshes k
and j, k ≠ j.
 ik : Unknown mesh current for mesh k in the clockwise direction.
 vk : Sum taken clockwise of all independent voltage sources in mesh k, with
voltage rise treated as positive.
Fundamentals of Electric Circuits – Viet Son Nguyen - 2011
R 1 R 3
R 4R 2
6 V
R 5
R 7
R 6
1 0 V
4 V
R 8
R 9
1 2 V
R10
33
III.3. Mesh analysis by inspection
Chapter 3: Methods of analysis
Ex 3.4: Write the mesh current equations.
3Ω
5Ω
2Ω
i2
i1
i5
4Ω 3Ω
1Ω1Ω
4Ω
2Ω 2Ω
i4
i3
 There are 5 meshes
R R R R R i v
R R R R R i v
R R R R R i v
R R R R R i v
R R R R R i v
11 12 13 14 15 1 1
21 22 23 24 25 2 2
31 32 33 34 35 3 3
41 42 43 44 45 4 4
51 52 53 54 55 5 5
     
     
     
     
     
     
          
R R R R
11 6 8 10
9    
R R R R R R
22 2 4 5 6 7
10      
R R R R
33 7 8 9
9     R R R R
44 1 2 3
8     R R R
55 3 4
4   
Fundamentals of Electric Circuits – Viet Son Nguyen - 2011
R 1 R 3
R 4R 2
6 V
R 5
R 7
R 6
1 0 V
4 V
R 8
R 9
1 2 V
R10
34
III.3. Mesh analysis by inspection
Chapter 3: Methods of analysis
Ex 3.4: Write the mesh current equations.
3Ω
5Ω
2Ω
i2
i1
i5
4Ω 3Ω
1Ω1Ω
4Ω
2Ω 2Ω
i4
i3
 There are 5 meshes
R R R R R i v
R R R R R i v
R R R R R i v
R R R R R i v
R R R R R i v
11 12 13 14 15 1 1
21 22 23 24 25 2 2
31 32 33 34 35 3 3
41 42 43 44 45 4 4
51 52 53 54 55 5 5
     
     
     
     
     
     
          
R R R
12 21 6
2     
R R R
13 31 8
2     
R R
14 41
0 
R R
15 51
0 
R R R
23 32 7
4     
R R R
24 42 2
1     
R R R
25 52 4
1     
R R
34 43
0 
R R
35 53
0 
R R R
45 54 3
3     
Fundamentals of Electric Circuits – Viet Son Nguyen - 2011
R 1 R 3
R 4R 2
6 V
R 5
R 7
R 6
1 0 V
4 V
R 8
R 9
1 2 V
R10
35
III.3. Mesh analysis by inspection
Chapter 3: Methods of analysis
Ex 3.4: Write the mesh current equations.
3Ω
5Ω
2Ω
i2
i1
i5
4Ω 3Ω
1Ω1Ω
4Ω
2Ω 2Ω
i4
i3
 There are 5 meshes
R R R R R i v
R R R R R i v
R R R R R i v
R R R R R i v
R R R R R i v
11 12 13 14 15 1 1
21 22 23 24 25 2 2
31 32 33 34 35 3 3
41 42 43 44 45 4 4
51 52 53 54 55 5 5
     
     
     
     
     
     
          
v V
1
4
v V
2
10 4 6  
v V
3
6 12 6   
v
4
0
v V
5
6 
i
i
i
i
i
1
2
3
4
5
9 2 2 0 0 4
2 10 4 1 1 6
2 4 9 0 0 6
0 1 0 8 3 0
0 1 0 3 4 6
      
    
        
       
    
      
          
Fundamentals of Electric Circuits – Viet Son Nguyen - 2011
R 1
R 3
R 2
R 4
R 6R 5
1 2 V
2 4 V
R 7
1 0 V
36
III.3. Mesh analysis by inspection
Chapter 3: Methods of analysis
Ex 3.5: Write the mesh current equations.
60Ω
50Ω 30Ω
i2
i1
i5
40Ω
80Ω
20Ω10Ω
i4
i3
 There are 5 meshes
R R R R R i v
R R R R R i v
R R R R R i v
R R R R R i v
R R R R R i v
11 12 13 14 15 1 1
21 22 23 24 25 2 2
31 32 33 34 35 3 3
41 42 43 44 45 4 4
51 52 53 54 55 5 5
     
     
     
     
     
     
          
R R R R
11 1 5 7
170    
R R R R
22 1 2 3
80    
R R R
33 2 4
50    R R R
44 3 5
90    R R R
55 4 6
80   
Fundamentals of Electric Circuits – Viet Son Nguyen - 2011
R 1
R 3
R 2
R 4
R 6R 5
1 2 V
2 4 V
R 7
1 0 V
37
III.3. Mesh analysis by inspection
Chapter 3: Methods of analysis
Ex 3.5: Write the mesh current equations.
60Ω
50Ω 30Ω
i2
i1
i5
40Ω
80Ω
20Ω10Ω
i4
i3
 There are 5 meshes
R R R R R i v
R R R R R i v
R R R R R i v
R R R R R i v
R R R R R i v
11 12 13 14 15 1 1
21 22 23 24 25 2 2
31 32 33 34 35 3 3
41 42 43 44 45 4 4
51 52 53 54 55 5 5
     
     
     
     
     
     
          
R R R
12 21 1
40     
R R
13 31
0 
R R R
14 41 5
80     
R R
15 51
0 
R R R
23 32 2
30     
R R R
24 42 3
10     
R R
25 52
0 
R R
34 43
0 
R R R
35 53 4
20     
R R
45 54
0 
Fundamentals of Electric Circuits – Viet Son Nguyen - 2011
R 1
R 3
R 2
R 4
R 6R 5
1 2 V
2 4 V
R 7
1 0 V
38
III.3. Mesh analysis by inspection
Chapter 3: Methods of analysis
Ex 3.5: Write the mesh current equations.
60Ω
50Ω 30Ω
i2
i1
i5
40Ω
80Ω
20Ω10Ω
i4
i3
 There are 5 meshes
R R R R R i v
R R R R R i v
R R R R R i v
R R R R R i v
R R R R R i v
11 12 13 14 15 1 1
21 22 23 24 25 2 2
31 32 33 34 35 3 3
41 42 43 44 45 4 4
51 52 53 54 55 5 5
     
     
     
     
     
     
          
v V
1
24
v
2
0
v V
3
12 
v V
4
10
v V
5
10 
i
i
i
i
i
1
2
3
4
5
170 40 0 80 0 24
40 80 30 10 0 0
0 30 50 0 20 12
80 10 0 90 0 10
0 0 20 0 80 10
      
    
       
       
    
      
         
Fundamentals of Electric Circuits – Viet Son Nguyen - 2011
39
IV. Nodal versus Mesh analysis
Chapter 3: Methods of analysis
 Nodal and mesh analyses provide a systematic way of analyzing a complex
network.
 Question: Given a network, which method is better or more efficient ?
 Mesh analysis many series-connected elements, voltage sources, or
super-meshes; nodal analysis  parallel-connected elements, current
sources, or super-nodes.
 Circuits have n < l nodal analysis; but l < n mesh analysis.
 Select method that results in the smaller number of equations
 Information required:
 Node voltages are required nodal analysis.
 Branch or mesh currents are required mesh analysis.
 Particular problems: Analyzing transistor , op amp circuits, or non-planar
circuit.

File đính kèm:

  • pdffundamentals_of_electric_circuit_chapter_3_methods_of_analys.pdf