Fundamentals of Electric Circuit - Chapter 3: Methods of analysis
I. Introduction.
II. Nodal analysis.
III. Mesh analysis.
VI. Nodal versus mesh analysis.
In chapter 2, we have studied the fundamental laws of circuit theory (Ohm’s law
and Kirchhoff’s laws).
This chapter will apply these laws to develop 02 powerful techniques for circuit
analysis:
Nodal analysis: Base on KCL
Mesh analysis: Base on KVL
Mesh II: i i i i i 2 1 2 3 0 2( ) 8( ) 10 0 Set of equations: 2Ω 8Ω4Ω 10i0 i2 i i i 1 2 3 6 2 4 20 i i 0 3 Mesh III: i i i 1 2 3 2 10 18 0 i i i i i 3 1 3 2 3 4( ) 8( ) 6 0 i i i 1 2 3 4 8 18 0 i i i i i i i i i 1 2 3 1 2 3 1 2 3 6 2 4 20 2 10 18 0 4 8 18 0 i A i A i A 1 2 3 3,21 9,64 5 i A 0 5 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R 1 R 3 1 0 V R 2 28 III.2. Mesh analysis with current sources Chapter 3: Methods of analysis 6Ω In general, the presence of the current sources reduces the number of equations in the mesh analysis. i1 A current source exists only in one mesh mesh current = current source 3Ω4Ω 5A i2 i i i i A 1 1 2 2 4 6( ) 10 5 Consider two cases: i A i A 1 2 2 5 A current source exists between two meshes create a super-mesh by excluding the current source and any elements connected in series with it A super-mesh results when two meshes have a (dependent or independent) current source in common. Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R 1 R 3 R 3 2 0 V R 2 29 III.2. Mesh analysis with current sources Chapter 3: Methods of analysis 4Ω Ex 1: Find the branch currents using mesh analysis. 0 10Ω 2Ω 6A i2 i i i 1 2 2 20 6 10 4 0 Create a super-mesh. 6Ω i1 i1 i2 There is a current source 6-A between two mesh. 4Ω 10Ω6Ω R 1 R 3 R 3 2 0 V i2i1 Applying KVL to the super-mesh gives: i i 1 2 6 14 20 Applying KCL to the node in the current source branch : i i 2 1 6 Note that: The current source in the super-mesh provides the constraint equation to solve for the mesh currents A super-mesh has no current of its own A super-mesh requires the using of both KVL and KCL Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R 1 R 3 R 4 R 2 1 0 V R 5 30 III.2. Mesh analysis with current sources Chapter 3: Methods of analysis Ex 2: Find i1, i4 using mesh analysis. Q 3i0 6Ω 5A i i i i i 1 3 3 4 2 2 4 8( ) 6 0 2Ω i2 i2 There are two super-meshes 8Ω 2Ω4Ω i i 2 1 5 i3 P i1 i0 i4i3i2 i1 Two super-meshes intersect form a larger super-mesh Applying KVL to the larger super- mesh: i i i i 1 2 3 4 3 6 4 0 Applying KCL to the node P: Applying KCL to the node Q: i i i 2 3 0 3 i i i i i0 4 2 3 4 3 Applying KVL in mesh 4: i i i4 4 32 8( ) 10 0 i i4 35 4 5 These equations give: i A 1 7.5 i A 2 2.5 i A 3 3,93 i A 4 2.14 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R 1 R 3 R 4R 2 6 V R 5 31 III.2. Mesh analysis with current sources Chapter 3: Methods of analysis Ex 3.3: Find i1, i2, i3 using mesh analysis. 4Ω i i i i i 1 3 2 3 2 6 2( ) 4( ) 8 0 2Ω Applying KVL to super-mesh: 8Ω 2Ω 1Ω A i2 i3 i1 Applying KCL to node A gives: We have a set of equations: 3A i i i 1 2 3 2 12 6 6 i i 1 2 3 Applying KCL to the mesh III: i i i i i 3 1 3 2 3 2( ) 4( ) 2 0 i i i 1 2 3 2 4 8 0 i i i i i i i i 1 2 3 1 2 1 2 3 2 12 6 6 3 2 4 8 0 i A i A i A 1 2 3 3,47 0,47 1,11 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 32 III.3. Mesh analysis by inspection Chapter 3: Methods of analysis In general, if a circuit (with only independent voltage sources) has N meshes, the mesh current equations can be expressed in terms of the resistances as: N N N N NN N N R R R i v R R R i v R R R i v 11 12 1 1 1 21 22 2 2 2 1 2 ... ... ... where: R i v Rkk : Sum of the resistances in mesh k. Rkj = Rjk : Negative of the sum of the resistances in common with meshes k and j, k ≠ j. ik : Unknown mesh current for mesh k in the clockwise direction. vk : Sum taken clockwise of all independent voltage sources in mesh k, with voltage rise treated as positive. Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R 1 R 3 R 4R 2 6 V R 5 R 7 R 6 1 0 V 4 V R 8 R 9 1 2 V R10 33 III.3. Mesh analysis by inspection Chapter 3: Methods of analysis Ex 3.4: Write the mesh current equations. 3Ω 5Ω 2Ω i2 i1 i5 4Ω 3Ω 1Ω1Ω 4Ω 2Ω 2Ω i4 i3 There are 5 meshes R R R R R i v R R R R R i v R R R R R i v R R R R R i v R R R R R i v 11 12 13 14 15 1 1 21 22 23 24 25 2 2 31 32 33 34 35 3 3 41 42 43 44 45 4 4 51 52 53 54 55 5 5 R R R R 11 6 8 10 9 R R R R R R 22 2 4 5 6 7 10 R R R R 33 7 8 9 9 R R R R 44 1 2 3 8 R R R 55 3 4 4 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R 1 R 3 R 4R 2 6 V R 5 R 7 R 6 1 0 V 4 V R 8 R 9 1 2 V R10 34 III.3. Mesh analysis by inspection Chapter 3: Methods of analysis Ex 3.4: Write the mesh current equations. 3Ω 5Ω 2Ω i2 i1 i5 4Ω 3Ω 1Ω1Ω 4Ω 2Ω 2Ω i4 i3 There are 5 meshes R R R R R i v R R R R R i v R R R R R i v R R R R R i v R R R R R i v 11 12 13 14 15 1 1 21 22 23 24 25 2 2 31 32 33 34 35 3 3 41 42 43 44 45 4 4 51 52 53 54 55 5 5 R R R 12 21 6 2 R R R 13 31 8 2 R R 14 41 0 R R 15 51 0 R R R 23 32 7 4 R R R 24 42 2 1 R R R 25 52 4 1 R R 34 43 0 R R 35 53 0 R R R 45 54 3 3 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R 1 R 3 R 4R 2 6 V R 5 R 7 R 6 1 0 V 4 V R 8 R 9 1 2 V R10 35 III.3. Mesh analysis by inspection Chapter 3: Methods of analysis Ex 3.4: Write the mesh current equations. 3Ω 5Ω 2Ω i2 i1 i5 4Ω 3Ω 1Ω1Ω 4Ω 2Ω 2Ω i4 i3 There are 5 meshes R R R R R i v R R R R R i v R R R R R i v R R R R R i v R R R R R i v 11 12 13 14 15 1 1 21 22 23 24 25 2 2 31 32 33 34 35 3 3 41 42 43 44 45 4 4 51 52 53 54 55 5 5 v V 1 4 v V 2 10 4 6 v V 3 6 12 6 v 4 0 v V 5 6 i i i i i 1 2 3 4 5 9 2 2 0 0 4 2 10 4 1 1 6 2 4 9 0 0 6 0 1 0 8 3 0 0 1 0 3 4 6 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R 1 R 3 R 2 R 4 R 6R 5 1 2 V 2 4 V R 7 1 0 V 36 III.3. Mesh analysis by inspection Chapter 3: Methods of analysis Ex 3.5: Write the mesh current equations. 60Ω 50Ω 30Ω i2 i1 i5 40Ω 80Ω 20Ω10Ω i4 i3 There are 5 meshes R R R R R i v R R R R R i v R R R R R i v R R R R R i v R R R R R i v 11 12 13 14 15 1 1 21 22 23 24 25 2 2 31 32 33 34 35 3 3 41 42 43 44 45 4 4 51 52 53 54 55 5 5 R R R R 11 1 5 7 170 R R R R 22 1 2 3 80 R R R 33 2 4 50 R R R 44 3 5 90 R R R 55 4 6 80 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R 1 R 3 R 2 R 4 R 6R 5 1 2 V 2 4 V R 7 1 0 V 37 III.3. Mesh analysis by inspection Chapter 3: Methods of analysis Ex 3.5: Write the mesh current equations. 60Ω 50Ω 30Ω i2 i1 i5 40Ω 80Ω 20Ω10Ω i4 i3 There are 5 meshes R R R R R i v R R R R R i v R R R R R i v R R R R R i v R R R R R i v 11 12 13 14 15 1 1 21 22 23 24 25 2 2 31 32 33 34 35 3 3 41 42 43 44 45 4 4 51 52 53 54 55 5 5 R R R 12 21 1 40 R R 13 31 0 R R R 14 41 5 80 R R 15 51 0 R R R 23 32 2 30 R R R 24 42 3 10 R R 25 52 0 R R 34 43 0 R R R 35 53 4 20 R R 45 54 0 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 R 1 R 3 R 2 R 4 R 6R 5 1 2 V 2 4 V R 7 1 0 V 38 III.3. Mesh analysis by inspection Chapter 3: Methods of analysis Ex 3.5: Write the mesh current equations. 60Ω 50Ω 30Ω i2 i1 i5 40Ω 80Ω 20Ω10Ω i4 i3 There are 5 meshes R R R R R i v R R R R R i v R R R R R i v R R R R R i v R R R R R i v 11 12 13 14 15 1 1 21 22 23 24 25 2 2 31 32 33 34 35 3 3 41 42 43 44 45 4 4 51 52 53 54 55 5 5 v V 1 24 v 2 0 v V 3 12 v V 4 10 v V 5 10 i i i i i 1 2 3 4 5 170 40 0 80 0 24 40 80 30 10 0 0 0 30 50 0 20 12 80 10 0 90 0 10 0 0 20 0 80 10 Fundamentals of Electric Circuits – Viet Son Nguyen - 2011 39 IV. Nodal versus Mesh analysis Chapter 3: Methods of analysis Nodal and mesh analyses provide a systematic way of analyzing a complex network. Question: Given a network, which method is better or more efficient ? Mesh analysis many series-connected elements, voltage sources, or super-meshes; nodal analysis parallel-connected elements, current sources, or super-nodes. Circuits have n < l nodal analysis; but l < n mesh analysis. Select method that results in the smaller number of equations Information required: Node voltages are required nodal analysis. Branch or mesh currents are required mesh analysis. Particular problems: Analyzing transistor , op amp circuits, or non-planar circuit.
File đính kèm:
- fundamentals_of_electric_circuit_chapter_3_methods_of_analys.pdf