Fundamentals of Control Systems - Chapter 7: Mathematical model of discrete time Control System
- Introduction to discrete-time system
- The Z-transform
- Transfer function of discrete-time system
- State-space equation of discrete-time system
Tóm tắt nội dung Fundamentals of Control Systems - Chapter 7: Mathematical model of discrete time Control System, để xem tài liệu hoàn chỉnh bạn click vào nút "TẢI VỀ" ở trên
( −−== zzUzGC⇒ 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 27 )(zE Calculate TF from block diagram – Example 3 (cont’) ⎫⎧ sG )( 20 s ⎭⎬⎩⎨−=• − s zzG )1()( 1 Z ⎫⎧ − 2.05e s 2 .5)( s esG − = 2 )1()20( +zz )1(10 +z ⎭⎬⎩⎨ −= − 31)1( sz Z 3 11 )1(2 .)1(5 −−= −− z zz 2)1( .)( −= zzzG⇒ ⎫⎧ sHsG )()( ⎭⎬⎩⎨−=• − s zzGH )1()( 1 Z 1.0)( =sH ⎬⎫⎨⎧ sG )()1(10 1 z zzT s 3 2 3 )1(2 )1(1 − +=⎭⎬ ⎫ ⎩⎨ ⎧Z⎭⎩−= − s z. Z )1(01.0)( += zzGH⇒ 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 28 sTs eez 2.0==2)1( −zz Calculate TF from block diagram – Example 3 (cont’) The closed-loop transfer function: ⎥⎤⎢⎡ +⎥⎦ ⎤⎢⎣ ⎡ − 2 )1(1.0.210 zz )()(1 )()()( zGHzG zGzGzG C C k += ⎥⎤⎢⎡ +⎥⎦ ⎤⎢⎣ ⎡ −+ ⎦⎣ −= 2 )1(01.0.2101 )1( zz zzz ⎦⎣ − )1(zzz 2.08.02 −+ zz 1 )1(1.0)( 210)( + −= − zG zzGC ⇒ 02.008.01.12 )( 234 −++−= zzzzzGk 2 )1(01.0)( )1( += −= zzGH zz z 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 29 2)1( −zz State-space model of discrete system 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 30 The discrete state space (SS) equation The state-space model of a discrete system is a set of first- order difference equations of the form: ⎧ +=+ )()()1( krkk BxAx ⎩⎨ = )()( kky d dd xC h ⎥⎤⎢⎡ n aaa K 11211 ⎤⎡b1 w ere: ⎤⎡ )(1 kx ⎥⎥⎢⎢= n d aaa MMM K 22221A ⎥⎥ ⎥ ⎢⎢ ⎢ =d bM 2B⎥⎥ ⎥ ⎢⎢ ⎢ = )()( 2 kxk Mx ⎥⎦⎢⎣ nnnn aaa K21 ⎥⎦⎢⎣ nb [ ]C ⎥⎦⎢⎣ )(kxn 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 31 nd ccc K21= Derive SS equation from difference equation Case 1: The right-hand side of the difference equation does not involve the differences of the input: )()()1()1()( kbkkkk ... 0110 uyayanyanya nn =++++−+++ − Define the state variables: The first state variable is the f h )()(1 = kykx output o t e system; The ith state variable (i=2..n) is set to be one sample time )1()( )1()( 23 12 += += kxkx kxkx - advanced of the (i−1)th state variable. )1()( 1 += − kxkx nn M 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 32 Derive SS equation from difference equation Case 1 (cont’) ⎨⎧ +=+ )()()1( krkk dd BxAx The state equations: ⎩ = )()( kky d xC where: ⎤⎡ 0010 ⎤⎡ 0 ⎥⎥ ⎥ ⎢⎢ ⎢ 0100 MMMM K K ⎥⎥ ⎥ ⎢⎢ ⎢ 0 M⎥⎥ ⎤ ⎢⎢ ⎡ )( )( 2 1 kx kx ⎥⎥ ⎥ ⎢⎢ ⎢= 121 1000 aaaa d K A ⎥⎥ ⎥ ⎢⎢ ⎢= 0 0 b dB ⎥⎥⎦⎢ ⎢ ⎣ = )( )( kx k Mx ⎥⎦⎢⎣ −−−− −− 0000 aaaa nnn K ⎥⎦⎢⎣ 0a [ ] n 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 33 0001 K=dC Derive SS equation from difference equation – Case 1 example Write the state equations of the system described by: ⎧ = )()( kykx )(3)(4)1(5)2()3(2 kukykykyky =++++++ ⎪⎩ ⎪⎨ += += )1()( )1()( 12 1 kxkx kxkx Define the state variables: 23 The state equations: ⎨⎧ +=+ )()()1( krkk dd BxAx ⎩ = )()( kky d xC ⎤⎡ 010010 ⎥⎥ ⎤ ⎢⎢ ⎡ == 0 0 0 0 dB where: ⎥⎥ ⎥ ⎦⎢ ⎢⎢ ⎣ −−− = −−− = 50522 100 100 123 aaa dA ⎥⎦⎢⎣ 5.1 0 0 a b 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 34 .. 000 aaa [ ]001=dC Derive SS equation from difference equation Case 2: The right-hand side of the difference equation involve the differences of the input: =++++−+++ )()1()1()( 110 kyakyankyankya D fi th t t i bl −... nn )()1(...)2()1( 1210 kubkubnkubnkub nn −− ++++−++−+ e ne e s a e var a e: The first state variable is the output of the system; )()(1 kykx = The ith state variable (i=2..n) is set to be one sample time- )()1()( )()1()( 223 112 krkxkx krkxkx −+= −+= β β advanced of the (i−1)th state variable minus a quantity i l h i )()1()( 11 krkxkx nnn −− −+= β M 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 35 proport ona to t e nput Derive SS equation from difference equation Case 2 (cont’) ⎩⎨ ⎧ +=+ )()( )()()1( kk krkk dd C BxAx The state equation: =y d x where: ⎤⎡ 0010 ⎥⎥ ⎥ ⎢⎢ ⎢ 0100 MMMM K K ⎥⎥ ⎤ ⎢⎢ ⎡ β β 2 1 ⎥⎥ ⎤ ⎢⎢ ⎡ )( )( 2 1 kx kx ⎥⎥ ⎥ ⎢⎢ ⎢= 121 1000 aaaa nnn d K A ⎥⎥ ⎥ ⎢⎢ ⎢= −n d β 1 MB ⎥⎥⎦⎢ ⎢ ⎣ = )( )( kx k n Mx ⎥⎦⎢⎣ −−−− −− 0000 aaaa K ⎥⎦⎢⎣ nβ [ ] 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 36 0001 K=dC Derive SS equation from difference equation C 2 ( t’)ase con The coefficient βi in the vector Bd are defined as: 0 0 1 a bβ = 0 111 2 a ab ββ −= 0 12212 3 a aab βββ −−= 1122111 aaab nnnn ββββ −−−− −−−−= K M 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 37 0a n Derive SS equation from difference equation – Case 2 example Write the state equations of the system described by: ⎧ = )()( kykx )(3)2()(4)1(5)2()3(2 kukukykykyky ++=++++++ ⎪⎩ ⎪⎨ += −+= )()1()( )()1()( 112 1 krkxkx krkxkx β β Define the state variables: − 223 The state equations: ⎨⎧ +=+ )()()1( kukk dd BxAx ⎩ = )()( kky d xC ⎤⎡ 010010 ⎥ ⎤⎢⎡ 1β β B where: ⎥⎥ ⎥ ⎦⎢ ⎢⎢ ⎣ == 50522 100 100 123 aaa dA ⎥ ⎥ ⎦⎢ ⎢ ⎣ = 3 2 β d 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 38 −−−−−− .. 000 aaa [ ]001=dC Derive SS from difference equation – Case 2 example (cont’) Th ffi i t β i th t B l l t de coe c en i n e vec or d are ca cu a e as: ⎪⎧ === 5010bβ ⎪⎪⎨ −=×−=−= 25.05.010 . 2 111 2 0 1 ab a ββ ⎪⎪ ⎪ ⎩ =×−−×−=−−= 375.0 2 5.05)25.0(13 2 12212 3 0 aab a βββ 0a ⎤⎡ 50 ⎥⎥ ⎥ ⎦⎢ ⎢⎢ ⎣ −= 3750 25.0 . dB⇒ 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 39 . Formulation of SS from block diagram y(t)r(t) e (t)e(kT)e(t)+− G(s)ZOHT R Step 1: Write the state space equations of the open-loop continuous system: y(t) G(s) eR(t) ⎩⎨ ⎧ += )()( )()()( tt tett R Cx BAxx& =y Step 2: Calculate the transient matrix: )]([)( 1 st Φ=Φ −L ( ) 1 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 40 )( -ss AI −=Φwhere Formulation of SS equations from block diagram (cont’) Step 3: Discretizing the open loop continuous SS equation:- G(s)ZOH e(kT) y(kT) ⎨⎧ +=+ )()(])1[( kTekTTk Rdd BxAx ⎪⎪ ⎧ Φ= ∫ A T d T )( with⎩ = )()( kTkTy d xC ⎪⎪⎩ ⎨ = Φ= CC B d d Bd 0 )( ττ Step 4: Write the closed-loop discrete state equations ( hi h h i t i l (kT))w c as npu s gna r [ ]⎨⎧ +−=+ )()(])1[( kTrkTTk dddd BxCBAx 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 41 ⎩ = )()( kTkTy d xC Formulation of SS equations from block diagram – Example l h SS i d ibi h Formu ate t e equat ons escr ng t e system: y(t)r(t) e (t)e(kT)e(t) x x+− ZOHT R s 1 as + 1 K2 1 where a = 2, T = 0.5, K = 10 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 42 Formulation of state equations from block diagram – Example (cont’) S l ti y(t)eR(t) s 1 2 1 +s 10 x2 x1 Step 1: o u on: s sXsX )()( 21 = )()( 21 sXssX =⇒ )()( 21 txtx =&⇒ 2 )()(2 += s sEsX R )()()2( 2 sEsXs R=+⇒ )()(2)( 22 tetxtx R+−=&⇒ { )( 1 0 )( )( 20 10 )( )( 2 1 2 1 te tx tx tx tx R⎥⎦ ⎤⎢⎣ ⎡+⎥⎦ ⎤⎢⎣ ⎡⎥⎦ ⎤⎢⎣ ⎡ −=⎥⎦ ⎤⎢⎣ ⎡ 43421& & ⇒ BA [ ] ⎥⎤⎢⎡== )(010)(10)( 11 txtxty 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 43 ⎦⎣ )(2 tx321C Formulation of state equations from block diagram – Example (cont’) Step 2: Calculate the transient matrix ( ) 11 1 20 1 20 10 10 01 )( −− ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ⎥⎦ ⎤⎢⎣ ⎡ + −=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ⎥⎦ ⎤⎢⎣ ⎡ −−⎥⎦ ⎤⎢⎣ ⎡=−=Φ s s sss -AI ⎥⎥ ⎤ ⎢⎢ ⎡ +=⎥⎦ ⎤⎢⎣ ⎡ += 1 )2( 11 0 12 )2( 1 ssss ⎥⎥⎦⎢⎢⎣ + + 2 0 s sss ⎤⎡ ⎬⎫⎨⎧⎬⎫⎨⎧⎫⎧ ⎤⎡ 1111 11 LL ⎥⎥ ⎥⎥ ⎦⎢ ⎢⎢ ⎢ ⎣ ⎭⎬ ⎫ ⎩⎨ ⎧ ⎭⎩ +⎭⎩= ⎪⎪⎭ ⎪⎪⎬ ⎪⎪⎩ ⎪⎪⎨ ⎥⎥ ⎥⎥ ⎦⎢⎢ ⎢⎢ ⎣ +=Φ=Φ − −− −− 10 )2( 2 10 )2()]([)( 1 11 ssssssst L LL ++ 2ss ⎥⎥ ⎤ ⎢⎢ ⎡ −=Φ − tet 2 )1( 2 11)(⇒ 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 44 ⎦⎣ − te 20 Formulation of state equations from block diagram – Example (cont’) Step 3: Discretizing the open loop ⎧ +=+ )()(])1[( kTekTTk BxAx- continuous state equations: ⎩⎨ = )()( kTkTy d Rdd xC ⎤⎡⎤⎡ 11 ⎥⎦ ⎤⎢⎣ ⎡=⎥⎥⎦⎢ ⎢ ⎣ −=⎥⎥⎦⎢ ⎢ ⎣ −=Φ= ×− ×− = − − 368.00 316.01 0 )1( 2 1 0 )1( 2 1)( 5.02 5.02 2 2 e e e eT Tt t t dA ∫∫∫ ⎪⎭ ⎪⎬ ⎫ ⎪⎩ ⎪⎨ ⎧ ⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ −= ⎪⎭ ⎪⎬ ⎫ ⎪⎩ ⎪⎨ ⎧ ⎥⎦ ⎤⎢⎣ ⎡ ⎥⎥⎦ ⎤ ⎢⎢⎣ ⎡ −=Φ= − − − − TTT d d e ed e ed 0 2 2 0 2 2 0 )1( 2 1 1 0 0 )1( 2 11)( ττττ τ τ τ τ BB ⎥⎤⎢⎡⎥ ⎥⎤⎢⎢ ⎡ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −+ ⎥⎥ ⎤ ⎢⎢ ⎡ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ + ×−− 092.02 1 22 5.0 22 22 5.02 2 2 ee Tττ ⎦⎣=⎥⎥⎦⎢ ⎢ ⎣ +− = ⎥⎥⎦⎢ ⎢ ⎣ − = ×−− 316.0 2 1 22 5.02 0 2 ee τ 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 45 [ ]010== CCd Formulation of state equations from block diagram – Example (cont’) Step 4: The closed-loop discrete state equations: [ ] ⎩⎨ ⎧ +−=+ )()( )()(])1[( kTkT kTrkTTk dddd C BxCBAx =y d x [ ] [ ] ⎥⎤⎢⎡⎥⎤⎢⎡⎥⎤⎢⎡ 316.0080.0010092.0316.01CBAwhere Conclusion: The closed loop state equation is: ⎦⎣−=⎦⎣−⎦⎣=− 368.0160.3316.0368.00ddd )( 092.0)(316.0080.0)1( 11 kr kxkx ⎥⎤⎢⎡+⎥⎤⎢⎡⎥⎤⎢⎡=⎥⎤⎢⎡ + - 316.0)(368.0160.3)1( 22 kxkx ⎦⎣⎦⎣⎦⎣−⎦⎣ + [ ] ⎥⎤⎢⎡= )(010)( 1 kxky 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 46 ⎦⎣ )( . 2 kx Calculate transfer function from state equation Gi th t t tiven e s a e equa on ⎨⎧ +=+ )()()1( kukk dd BxAx⎩ = )()( kky d xC Th di f f i i e correspon ng trans er unct on s: zzYzG BAIC 1)()()( −−== dddzU )( 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 47 Calculate transfer function from state equation - Example Calculate the TF of the system described by the SS equation: ⎩⎨ ⎧ = +=+ )()( )()()1( kky kukk d dd xC BxAx ⎥⎦ ⎤⎢⎣ ⎡= 1070 10 dA ⎥⎦ ⎤⎢⎣ ⎡= 2 0 dB [ ]01=dC Solution: The transfer function is: −− .. ddd zzG BAIC 1)()( −−= [ ] ⎥⎤⎢⎡⎟⎟⎞⎜⎜⎛ ⎥⎤⎢⎡⎥⎤⎢⎡= − 01001 01 1 z ⎦⎣⎠⎝ ⎦⎣ −− −⎦⎣ 21.07.010 2)(G⇒ 16 November 2011 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 48 7.01.02 ++= zzz
File đính kèm:
- fundamentals_of_control_systems_chapter_7_mathematical_model.pdf