Fundamentals of Control Systems - Chapter 2: Mathematical Models of Continuous Control Systems
The concept of mathematical model
Transfer function
Block diagram algebra
Signal flow diagram
State space equation
Linearized models of nonlinear systems
Nonlinear state equation
Linearized equation of stat
.edu.vn/~hthoang/ Nonlinear systems Nonlinear systems do not satisfy the superposition principle and cannot be described by a linear differential equation. Most of the practical systems are nonlinear: Fluid system (Ex: liquid tank,) Thermal system (Ex: furnace ), Mechanical system (Ex: robot arm,.) Electro magnetic system (TD: motor )- , Hybrid system , 6 November 2012 99© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Mathematical model of nonlinear systems Input output relationship of a continuous nonlinear system– can be expressed in the form of a nonlinear differential equations. )(,)(,,)(),(,)(,,)()( 1 1 tu dt tdu dt tudty dt tdy dt tydg dt tyd m m n n n n where: u(t): input signal, y(t): output signal, g(.): nonlinear function 6 November 2012 100© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Nonlinear system – Example 1 a: cross area of the dischage valve A: cross area of the tank g: gravity acceleration k t t(t) u(t) qin : cons an CD: discharge constant y qout Balance equation: )()()( tqtqtyA outin )()( tkutq where: in )(2)( tgyaCtq Dout (first order li t ) )(2)(1)( tgyaCtkuty D 6 November 2012 101 non near sys em A © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Nonlinear system – Example 2 J: moment inertia of the robot arm M: mass of the robot arm m: object mass l: length of robot armm l lC : distance from center of gravity to rotary axis B: friction constant g: gravitational acceleration u u(t): input torque (t): robot arm angle According to Newton’s Law )(cos)()()()( 2 tugMlmltBtmlJ C )( )( 1cos )( )()( )( )( 222 tumlJ g mlJ Mlmlt mlJ Bt C 6 November 2012 102 (second order nonlinear system) © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Nonlinear system – Example 3 : steering angle : ship angle k: constant i: constant(t) (t) Moving direction The differential equation describing the steering dynamic of a ship: )()()()(1)(11)( 3 ttktttt (third order nonlinear system) 3 212121 6 November 2012 103© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Describing nonlinear systems by state equations A continuous nonlinear system can be described by the state equation: ))(),(()( tutt xfx ))(),(()( tuthty x where: u(t): input, y(t): output, x(t): state vector, x(t) = [x1(t), x2(t),,xn(t)]T f(.), h(.): nonlinear functions 6 November 2012 104© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ State-space model of nonlinear system – Example 1 Differential equation: (t) u(t) qin )(2)(1)( tgyaCtku A ty D Define the state variable: )()( y qout 1 tytx St t ti ))(),(()( tutt xfx a e equa on: ))(),(()( tuthty x )( )(2 ),( 1 tu A k A tgxaC u D xfwhere 6 November 2012 105 )())(),(( 1 txtuth x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ State-space model of nonlinear system – Example 2 Differential equation: m u l )( )( 1cos )( )()( )( )( 222 tumlJ g mlJ Mlmlt mlJ Bt C Define the state variable: )()( )()( 2 1 ttx ttx State equation: ))()(()( ))(),(()( h tutt xfx , tutty x )(2 tx where )( )( 1)( )( )(cos )( )(),( 22212 tumlJ tx mlJ Btx mlJ gMlmlu Cxf 6 November 2012 106 )())(),(( 1 txtuth x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Equilibrium points of a nonlinear system Consider a nonlinear system described by the diff. equation: ))(),(()( ))(),(()( tuthty tutt x xfx The state is called the equilibrium point of the nonlinear system if the system is at the state and the control signal is x x If is equilibrium point of the nonlinear system then:)( ux fixed at then the system will stay at state forever.u x , 0))(),(( , uutut xxxf The equilibrium point is also called the stationary point of the nonlinear system. 6 November 2012 107© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Equilibrium point of nonlinear system – Example 1 Consider a nonlinear system described by the state equation: )(2)( )().( )( )( 21 21 2 1 txtx utxtx tx tx Find the equilibrium point when 1)( utu Solution: 0))(),(( , uutut xxxf The equilibrium point(s) are the solution to the equation: 02 01. 21 21 xx xx 2 21x 2 21x or 6 November 2012 108 22x 22x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Equilibrium point of nonlinear system – Example 2 C id li t d ib d b th t t ti ons er a non near sys em escr e y e s a e equa on: uxxx 2 3 2 21 1 ux xxx x x 2 3 313 3 2 )sin( Find the equilibrium point when 0)( utu 1xy 6 November 2012 109© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized model of a nonlinear system around an equilibrium point Consider a nonlinear system described by the diff equation: ))()(()( ))(),(()( tuthty tutt x xfx . (1) , Expanding Taylor series for f(x,u) and h(x,u) around the equilibrium point , we can approximate the nonlinear system (1) by the following linearized state equation: ),( ux )(~)(~)(~ )(~)(~)(~ tutty tutt DxC BxAx (2) where: ututu tt )()(~ )()(~ xxx 6 November 2012 110 ytyty )()(~ )),(( uhy x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized model of a nonlinear system around an equilibrium point Th t i f th li i d t t ti l l t d e ma r x o e near ze s a e equa on are ca cu a e as follow: 1 2 1 1 1 n fff x f x f x f 2 1 f u f 2 2 2 1 2 nxxxA f uB )(21 un nnn x f x f x f ,x )( u n u ,x )(21 nx h x h x hC )( uu h x D 6 November 2012 111 u,x , © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 1 The parameter of the tank: u(t) qin 3 22 80/150 100 ,1 CVk cmAcma y(t) qout 2sec/981 . ,.sec cmg cm D Nonlinear state equation: ))()(()( ))(),(()( tuthty tutt x xfx , )(94650)(35440)( )(2 )( 1 k tgxaCDf where .., 1 tutxtuAA u x )())(),(( 1 txtuth x 6 November 2012 112© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 1 (cont’) Linearize the system around y = 20cm: The equilibrium point: 201 x 05.13544.0),( 1 uxuxf 9465.0u 6 November 2012 113© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 1 (cont’) The matrix of the linearized state space model: 0396.021 D gaCfA - 1 hC 2 )(1)(1 uu xAx ,x,x )(1 ux ,x 5.1 )()( 1 uu A k u f ,x,x B 0 )( uu h ,x D The linearized state equation describing the system around the equilibrium point y=20cm is: )( )(2 ),( 1 tu A k A tgxaC u D xf )(~)(~ )(~5.1)(~0396.0)(~ tutt xx 6 November 2012 114 )())(),(( 1 txtuth x tty x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 2 The parameters of the robot: 2 C 02050 1.0,2.0 ,5.0 mkgJkgM kgmmlml m u l 2sec/81.9 ,005.0 ..,. mgB Nonlinear state equation : ))()(()( ))(),(()( tuthty tutt x xfx , )(2 tx where: )( )( 1)( )( )(cos )( )(),( 22212 tumlJ tx mlJ Btx mlJ gMlmlu Cxf 6 November 2012 115 )())(),(( 1 txtuth x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 2 (cont’) Linearize the system around the equilibrium point y = /6 (rad): Calculating the equilibrium point: 6/x1 01cos)(),( 2 uxBxgMlml x u Cxf )()()( 22212 mlJmlJmlJ 02x 2744.1u Th th ilib i i t i 6/xen e equ r um po n s: 02 1 x x 27441 6 November 2012 116 .u © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 2 (cont’) The system matrix around the equilibrium point: 1211 aa aa A 0 1 1 11 x fa 1 )(2 1 12 x fa 2221 )( u,x 12 2 21 )(sin )( C txMlmlfa u,x )()(1 )( uu mlJx ,x,x 2 Bfa 1)( )( )( 2 BgMlml tx u Cxf )( 2 )(2 22 )( uu mlJx ,x,x 6 November 2012 117 )()()()()(cos)( , 22212 tumlJ tx mlJ tx mlJ © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 2 (cont’) The input matrix around the equilibrium point: 1 b b B 01fb 2 )( 1 uu ,x 1f 2 )( 2 2 mlJu b u ,x )(1)()()( )( )( 2 BgMlml tx u Cxf 6 November 2012 118 )()(cos)( , 22212 tumlJ tx mlJ tx mlJ © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Linearized state-space model – Example 2 (cont’) The output matrix around the equilibrium point: 1 1 1 x hc 21 ccC 0 )(2 2 x hc )( u,x u,x 1dD 0 )( 1 u hd u,x Then the linearized state equation is: )(~)(~)(~ )(~)(~)(~ ttt tutt DxC BxAx uy 10 A 0 B 01C 0D 2221 aa 2b 6 November 2012 119 )(),( 1 txuh x © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ Regulating nonlinear system around equilibrium point Drive the nonlinear system to the neighbor of the equilibrium point (the simplest way is to use an ON-OFF controller) Around the equilibrium point, use a linear controller to maintain the system around the equilibrium point. Linear r(t) Nonlinear system+ y(t) control u(t)e(t) ON-OFF Mode select 6 November 2012 120© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/
File đính kèm:
- fundamentals_of_control_systems_chapter_2_mathematical_model.pdf