Đồ án Xây dựng hệ truyền động điện động cơ một chiều sử dụng bộ điều khiển PID
Ngày nay với sự phát triển không ngừng của nền khoa học kỹ thuật đã tạo
ra những thành tựu to lớn, trong đó ngành tự động hóa cũng góp phần không
nhỏ vào thành công đó. Một trong những vấn đề quan trọng trong các dây truyền
tự động hoá sản xuất hiện đại là việc điều chỉnh tốc độ động cơ. Từ trước đến
nay, động cơ một chiều vẫn luôn là loại động cơ được sử dụng rộng rãi kể cả
trong những hệ thống yêu cầu cao. Vì vậy em đã được giao đề tài tốt nghiệp là:
“Xây dựng hệ truyền động điện động cơ một chiều sử dụng bộ điều khiển
PID”. Nội dung đề tài được chia làm 3 chương:
Chương 1. Tổng quan về hệ truyền động điện một chiều
Chương 2. Xây dựng mô hình hệ truyền động điện một chiều trên Matlab
và Simulink
Chương 3. Xây dựng mô hình vật lý bộ điều khiển PID điều khiển động
cơ điện một chiều
n trở R5 để thay đổi hệ số I của bộ điều khiển, sử dụng khóa sw2 ta có thể ngắt được bộ này ra khỏi mạch điều khiển. Theo tính chất của khuếch đại thuật toán ta có: UI = 1 R5.C7 ΔU.dt (3.15) Điện áp ra tỷ lệ với tích phân điện áp vào R5.C7 gọi là hằng số tích phân Ta chọn R5 = 100 (KΩ) và C7 = 10 (µF) +) Khâu vi phân: Ta sử dụng biến trở R6 để thay đổi hệ số D của bộ điều khiển, sử dụng khóa sw3 ta có thể ngắt được bộ này ra khỏi mạch điều khiển. Theo tính chất của khuếch đại thuật toán ta có: UD = C8.R6. dΔU dt (3.16) Điện áp ra tỷ lệ với tích phân điện áp vào C8.R6 gọi là hằng số vi phân Ta chọn R6 = 50 (KΩ) và C8 = 100 (nF) - Mạch cộng điện áp Hình 3.16: Sơ đồ nguyên lý mạch cộng điện áp 50 Mạch cộng điện áp thực hiện nhiệm vụ cộng giá trị điện áp Up, UI, UD lại Nếu R15 = R16 = R17 = R18, theo tính chất của khuếch đại thuật toán ta có: Uđk = - (UP + UI + UD) (3.17) Ta chọn: R15 = R16 = R17 = R18 = 10 (KΩ) - Khâu nhận biết chiều của tín hiệu điều khiển Hình 3.17: Sơ đồ nguyên lý khâu nhận biết chiều của tín hiệu điều khiển Ta chọn R23 = 4,7 (KΩ) và D1 là diode zener loại DZ5V1. - Mạch tách tín hiệu chiều và độ lớn tín hiệu điều khiển sử dụng IC CD4052 CD4052B là một bộ dồn kênh - phân kênh 4 kênh tương tự. Có hai ngõ chọn đầu vào nhị phân là A và B, và một hạn chế đầu vào. Hai tín hiệu đầu vào lựa chọn 1 trong 4 cặp kênh phải được bật và kết nối các yếu tố đầu vào tương tự và ra sẽ được đầu ra. +) Sơ đồ chân của CD4052 Hình 3.18: Sơ đồ chân của CD4052 51 +) Khi tách kênh dữ liệu vào chân COM OUT/IN, ra ở 4 kênh CHANNEL I/O. Ngược lại, khi dồn kênh thì dữ liệu song song vào các chân CHANNEL OUT/IN và ra ở chân COM OUT/IN. +) 2 ngõ chọn là A, B +) Chân INH (inhibit) cho phép dữ liệu được phép truyền ra Hình 3.19. Cấu trúc mạch của CD4052 Bảng 3.2. Hoạt động của CD4052 52 Hình 3.20: Sơ đồ nguyên lý mạch tách tín hiệu điều khiển dùng CD4052 Điện áp điều khiển được đưa vào chân 13 của CD4052, thực hiện tách kênh dữ liệu. Điện áp điều khiển được tách xang 2 kênh X0 và X1. Nếu không có tín hiệu bít điều khiển, chân X0 sẽ được nối với Y0 và ta có đầu ra Y. Nếu có tín hiệu bit điều khiển thì chân X1 sẽ được nối với Y1, điện áp điều khiển có thể âm lên từ chân X1 điện áp điều khiển sẽ được qua một mạch khuếch đại thuật toán đảo, như vậy ta sẽ có đầu ra Y. Chọn R21 = R22 = 10 (K ) - Mạch tạo xung dao động dùng IC NE555 +) 555 là một loại linh kiện khá là phổ biến bây giờ với việc dễ dàng tạo được xung vuông và có thể thay đổi tần số tùy thích, với sơ đồ mạch đơn giản, điều chế được độ rộng xung. Nó được ứng dụng hầu hết vào các mạch tạo xung đóng cắt hay là những mạch dao động khác. Đây là linh kiện của hãng CMOS sản xuất[1]. Điện áp đầu vào: 2 - 18V (Tùy từng loại LM555, NE555, NE7555) 53 Dòng điện cung cấp: 6mA - 15mA Điện áp logic ở mức cao: 0,5 - 15V Điện áp logic ở mức thấp: 0,03 - 0,06V Công suất lớn nhất là: 600mW +) Sơ đồ chân của NE555 Hình 3.21: Sơ đồ chân của NE555 IC NE 555 gồm có 8 chân +) Chấn số 1 (GND): Cho nối GND để lấy dòng cấp cho IC hay còn gọi là chân chung. +) Chân số 2(TRIGGER): ngõ vào của 1 tần so áp. Mạch so áp dùng các transistor PNP, mức áp chuẩn là 2.Vcc/3. +) Chân số 3(OUTPUT): Chân này là chân dùng để lấy tín hiệu ra logic. Trạng thái của tín hiệu ra được xác định theo mức 0 và 1, 1 ở đây là mức cao nó tương ứng với gần bằng Vcc nếu (PWM=100%) và mức 0 tương đương với 0V nhưng mà trong thực tế mức 0 này ko được 0V mà nó trong khoảng từ (0.35 ->0.75V). +) Chân số 4(RESET): Dùng lập định mức trạng thái ra. Khi chân số 4 nối masse thì ngõ ra ở mức thấp. Còn khi chân 4 nối vào mức áp cao thì trạng thái ngõ ra tùy theo mức áp trên chân 2 và 6. Nhưng mà trong mạch để tạo được dao động thường hay nối chân này lên VCC. +) Chân số 5 (CONTROL VOLTAGE): Dùng làm thay đổi mức áp chuẩn trong IC555 theo các mức điện áp ngoài hay dùng các điện trở ngoài cho nối GND. Chân này có thể không nối cũng được nhưng mà để giảm trừ nhiễu người ta thường nối chân số 5 xuống GND thông qua tụ điện từ 0.01uF đến 0.1uF các tụ này lọc nhiễu và giữ cho điện áp chuẩn được ổn định. 54 +) Chân số 6(THRESHOLD) : là một trong những chân đầu vào so sánh điện áp khác và cũng được dùng như 1 chân chốt. +) Chân số 7(DISCHAGER) : có thể xem chân này như 1 khóa điện tử và chịu điều khiển bỡi tầng logic của chân 3. Khi chân 3 ở mức áp thấp thì khóa này đóng lại.ngược lại thì nó mở ra. Chân 7 tự nạp xả điện cho 1 mạch RC lúc IC555 dùng như một mạch dao động. +) Chân số 8 (Vcc): Đó là chân cung cấp áp và dòng cho IC hoạt động. Không có chân này coi như IC chết. Nó được cấp điện áp từ 2V ->18V (Tùy từng loại 555 thấp nhất là NE7555). Hình. 3.22: Mạch tạo dao động dùng NE555 Khi tụ C4 nạp điện ta có: T1 = 0,693.C4.(R7 + R27) Khi tụ C4 phóng điện ta có: T2 = 0,693.C4.R27 Vậy chu lỳ xung là: T = T1 + T2 = 0,693.C4.(R7 + 2.R27) Để tạo dao động có tần số 10Khz, tức là chu kỳ dao động T = 1 f = 1 10 4 = 10 -4 s Ta chọn: R7 = 50 (K ), R27 = 100 (K ), C4 = 1 (nF) 55 Vậy: T1 = 0,639.10 -9 .(50000 + 100000) = 1,04.10 -4 (s) T2 = 6,93.10 -9 .100000 = 6,93.10 -5 (s) - Mạch tạo xung răng cưa dùng khóa Transistor Hình 3.23: Mạch tạo xung răng cưa dùng Transistor Khi transistor mở, tụ C3 phóng điện qua transistor, Uc = 0. Khi transistor khóa tụ C3 nạp điện từ +12V qua R29, điện áp trên tụ thay đổi theo quy luật hàm mũ với hằng số thời gian ι = R29.C3 [1]. Uc = 12.(1 - e t ι ) (3.18) để lấy đoạn tuyến tính của điện áp trên tụ có thể chọn T = 1 3 .ι +) Chọn transistor là loại A1015 có các thông số sau: Ic = 150 mA = 0,15 (A) VCB0 = -50 (V) VCE0 = -50 (V) Pcmax = 400 (mW) Tần số hoạt động 1 kHz +) Dòng điện cực đại qua Bazơ là IB = IC HFE = 0,15 90 .1,2 = 2 (mA) 56 Mà IB = 12-0,7 R28+R29 Vậy R28 + R29 = 5650 ( ) Ta có Un = 12V, T = 10 -4 s, vậy R29.C3 = 3.10 -4 Chọn R 28 = 3 (K ), R29 = 3 (K ), tụ C3 = 0,1 (µF) - Mạch so sánh Hình 3.24: Mạch so sánh điện áp Đây là mạch so sánh hai điện áp vào đó là: Điện áp răng cưa và điện áp điều khiển Uđk (lấy từ bên ngoài vào)[1] Tại thời điểm bằng nhau về giá trị tuyệt đối của 2 điện áp này, trong phần sườn sử dụng của điện răng cưa thì mạch phát ra một xung điện áp, xung này được đưa qua khối tạo xung nó có thể thay đổi được độ dài công suất, độ dốc sườn trước. Có nghĩa là khối so sánh là nơi quyết định giá trị góc điều khiển Đồ thị so sánh điện áp: 57 Hình 3.25: Đồ thị so sánh điện áp Muốn xác định được thời điểm mở van công suất ( góc mở ) thì ta tiến hành so sánh hai tín hiệu Uđk và Urc. Điện áp răng cưa được đưa vào cửa đảo của khâu khuếch đại thuật toán qua R25 để so sánh với điện áp điều khiển được đưa vào cửa không đảo, điện áp điều khiển được đưa vào cửa không đảo của khuếch đại thuật toán qua R24. +) Nếu Uc 0. +) Nếu Uc > Uđk thì tín hiệu ra là âm Ur < 0. +) Nếu Uc = Uđk thì đó là thời điểm phát xung để mở van công suất. Vậy ở đầu ra của khuếch đại thuật toán là một chuỗi xung âm dương liên tiếp. Muốn thay đổi góc mở của van công suất thì ta thay đổi giá trị độ lớn của điện áp điều khiển Uđk. +) Điốt D2 dùng để loại bỏ phần xung âm. Vì vậy điện áp ra chỉ còn phần xung dương. +) Tính toán khâu so sánh Chọn điện trở R24 = R25 = R26 = 4,7 (k ) Điốt D2 dùng để giới hạn điện áp đầu ra chọn loại DZ5V1 58 - Xây dựng mạch điều khiển Hình 3.26: Sơ đồ nguyên lý khâu điện áp đặt và mạch trừ 59 Hình 3.27: Sơ đồ nguyên lý bộ điều khiển PID 60 Hình 3.28: Sơ đồ nguyên lý khâu nhận biết chiều và tách điện áp điều khiển Hình 3.29: Sơ đồ mạch tạo xung răng cưa và khâu so sánh điện áp 61 3.3. KẾT QUẢ THỰC NGHIỆM Sau hơn ba tháng nghiên cứu em đã hoàn thành đồ án tốt nghiệp: “Nghiên cứu tổng quan về hệ truyền động điện một chiều, đi sâu xây dựng bộ điều khiển PID cho động cơ điện một chiều” với các kết quả đạt được như sau: - Tìm hiểu tổng quan về động cơ một chiều - Các phương pháp điều khiển tốc độ động cơ một chiều - Xây dựng mô hình hệ truyền động điện một chiều trên Matlab & Simulink - Xây dựng bộ điều khiển PID ứng dụng cho động cơ một chiều. Hình 3.31: Mô vật lý điều khiển tốc độ động cơ điện một chiều 62 KẾT LUẬN Đề tài điều khiển động cơ một chiều sử dụng bộ điều khiển PID tuy không phải là một đề tài mới, nhưng qua đó đã phản ánh được tính nghiêm túc trong việc học hỏi và vận dụng các kiến thức vào việc thực hiện đề tài. Sau thời gian ba tháng nghiên cứu em đã hoàn thành đề tài với các kết quả đạt được như sau: Tìm hiểu tổng quan về động cơ một chiều, các phương pháp điều khiển tốc độ động cơ một chiều, xây dựng mô hình hệ truyền động điện một chiều trên Matlab & Simulink và lý thuyết điều khiển tự động từ đó làm cơ sở cho việc xây dựng bộ điều khiển PID ứng dụng cho động cơ một chiều. Tuy nhiên bản đồ án vẫn còn một số vấn đề tồn tại, hạn chế cần giải quyết: +) Việc kiểm soát các tham số của bộ điều khiển PID là khá khó khăn. +) Chưa quan sát được một cách trực quan tốc độ động cơ trên máy tính. Do vậy, hướng phát triển tiếp theo của đề tài sẽ là: +) Ứng dụng cảm biến đo dòng điện ACS712 xây dựng hệ thông điều khiển gồm 2 mạch vòng tốc độ và dòng điện cho động cơ điện một chiều. +) Thiết kế giao diện trên máy tính cho phép quan sát được đáp ứng tốc độ. +) Xây dựng bộ điều khiển PID cho hệ thống điều khiển vị trí. 63 TÀI LIỆU THAM KHẢO 1. Nguyễn Bính (1996), Điện tử công suất. NXB Khoa Học Kỹ Thuật 2.Bùi Quốc Khánh, Nguyễn Văn Liễn, Phạm Quốc Hải, Dương Văn Nghi (2008), Điều chỉnh tự động truyền động điện. NXB Khoa học và kỹ thuật 3. Bùi Quốc Khánh, Nguyễn Văn Liễn (2005), Cơ Sở Truyền Động Điện. NXB Khoa học và kỹ thuật 4. Nguyễn Phùng Quang (2006), Matlab & Simulink dành cho kỹ sư điều khiển tự động. NXB Khoa học và kỹ thuật 5. Design PID circuit -
File đính kèm:
- Đồ án Xây dựng hệ truyền động điện động cơ một chiều sử dụng bộ điều khiển PID.pdf