Bài giảng Thiết kế hệ thống điều khiển
•Giới thiệu
• Mô hình toán học của các hệthống kỹthuật
• Phân tích vàthiết kếcác hệthống điều khiển
• Ứng dụng phần mềm MATLAB
•Phần tùy chọn (thay thếcho bài thi giữa kỳ): Project “Điều khiển tốc độ
động cơmột chiều, sửdụng vi điều khiển”
2, ,..., nK k k k= 58 Phương pháp gán điểm cực • Tính chất điều khiển được: Một hệ được gọi là điều khiển được nếu từ bất kỳ trạng thái ban đầu x0 nào cũng tồn tại tín hiệu điều khiển u(t) đưa được hệ tới trạng thái mong muốn xT sau khoảng thời gian hữu hạn. • Điều kiện kiểm tra tính điều khiển được (tiêu chuẩn Kalman): • Điều kiện cần và đủ để bài toán thiết kế bộ điều khiển phản hồi trạng thái gán điểm cực có lời giải là hệ được xét phải điều khiển được. 2 1[ , , ,... ]nrank B AB A B A B n− = 59 Phương pháp gán điểm cực Ví dụ 1: Xét hệ , với x Ax Bu= + 0 1 0 0 0 0 1 , 0 1 5 6 1 A B ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ Kiểm tra tính điều khiển được: Tìm vector phản hồi trạng thái K sao cho hệ kín có các điểm cực: ( )2 0 0 1 0 1 6 , 3 1 6 31 M B AB A B rank M ⎡ ⎤⎢ ⎥⎡ ⎤= = − =⎣ ⎦ ⎢ ⎥−⎢ ⎥⎣ ⎦ Có thể tìm được vector K thỏa mãn bài toán. 1,2 32 4 , 10s j s= − ± = − 60 Phương pháp gán điểm cực ( ) Vì hệ bậc 3 nên ma trận K có dạng: K=[k1,k2,k3]. Phương trình đặc trưng của hệ kín: ( ) ( )3 23 2 1det 6 5 1sI A BK s k s k s k− + = + + + + + + Phương trình đặc trưng mong muốn: ( )( )( ) 3 22 4 2 4 10 14s 60s 200s j s j s s+ − + + + = + + + Đồng nhất hệ số ta có: 1 2 3199, 55, 8k k k= = = [ ]199,55,8K = Bộ điều khiển phản hồi trạng thái: 1 2 3199 55 8u Kx x x x= − = − − − 61 Phương pháp gán điểm cực • Trường hợp mô hình trạng thái có dạng chuẩn điều khiển: 0 1 2 1 0 1 0 ... 0 0 0 0 1 ... 0 0 ... ... ... ... ... , ... 0 0 0 ... 1 0 ... 1n A B a a a a − ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − − ⎣ ⎦⎣ ⎦ Phương trình đặc trưng của đối tượng: 11 1 0... 0 n n ns a s a s a − −+ + + + = 62 Phương pháp gán điểm cực • Trường hợp mô hình trạng thái có dạng chuẩn điều khiển: ( ) ( ) ( ) ( )0 1 1 2 2 3 1 0 1 0 ... 0 0 0 1 ... 0 ... ... ... ... ... 0 0 0 ... 1 ... n n A BK a k a k a k a k− ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥− = ⎢ ⎥⎢ ⎥⎢ ⎥− + − + − + − +⎣ ⎦ Đa thức đặc trưng của hệ kín: ( ) ( ) ( )11 1 2 0 1...n nn ns a k s a k s a k−−+ + + + + + + Đa thức đặc trưng mong muốn: ( )( ) ( ) 11 2 1 1 0... ...n nn ns s s s s s s s sα α α−−− − − = + + + + Đồng nhất các hệ số tương ứng của hai đa thức đặc trưng ta có: 1 0 0 2 1 1 1 1 , ,..., n n nk a k a k aα α α − −= − = − = − 63 Phương pháp gán điểm cực ( Xem xét ví dụ trước, mô hình trạng thái có dạng chuẩn điều khiển, với: )( )( ) 3 22 4 2 4 10 14s 60s 200s j s j s s+ − + + + = + + + 0 1 21 , 5 , 6a a a= = = Phương trình đặc trưng mong muốn là: Tức là: 0 1 2200 , 60 , 14α α α= = = Vậy suy ra: 1 2 3199 , 55 , 8k k k= = = 64 Phương pháp gán điểm cực • Nếu mô hình trạng thái chưa ở dạng chuẩn điều khiển, có thể chuyển mô hình về dạng chuẩn điều khiển nhờ phép đổi biến , với ma trận T xác định như sau: x Tz= T MW= 1, ,..., nM B AB A B−⎡ ⎤= ⎣ ⎦ 1 2 1 2 3 1 ... 1 ... 1 0 ... ... ... ... ... 1 ... 0 0 1 0 ... 0 0 n n a a a a a W a − − ⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ [ ] 11 1 1 1, ,...,n n n nK a a a Tα α α −− −= − − −Khi đó vector K tính như sau: 65 Phương pháp gán điểm cực • Phương pháp 3: Công thức Ackerman [ ] ( )110 0 ... 0 1 ... nK B AB A B A−−⎡ ⎤= Φ⎣ ⎦ ( ) 11 1...n n n nA A A A Iα α α− −Φ = + + + + 66 Phương pháp gán điểm cực • Giải bài toán gán điểm cực trên Matlab: – Pc=ctrb(A,B); – Po=obsv(A,C); – n=rank(Pc); – d=det(Pc) – K=acker(A,B,P); • Giải lại ví dụ trước sử dụng Matlab: Pc = 0 0 1 0 1 -6 1 -6 31 n = 3 K = 199 55 8 A=[0 1 0;0 0 1;-1 -5 -6]; B=[0; 0; 1]; Pc=ctrb(A,B); n=rank(Pc); P=[-2+4*j,-2-4*j,-10]; K=acker(A,B,P); 67 Phương pháp gán điểm cực • Ví dụ 2: Đối tượng có hàm truyền đạt ( ) ( )( )( ) 20 5 1 4 s G s s s s += + + Thiết kế hệ thống điều khiển phản hồi sao cho hệ kín có độ quá điều chỉnh không quá 5% và thời gian xác lập 1 giây khi kích thích bằng tín hiệu bước nhảy đơn vị. Xem xét cấu trúc điều khiển phản hồi trạng thái sau đây: 68 Phương pháp gán điểm cực Từ yêu cầu của bài toán suy ra điều kiện của cặp nghiệm trội: 2/ 1 4 1 0.05 n e ςπ ς ςω − − = = 1,2 4 4.1946s j= − ± Điểm cực thứ ba được chọn bằng điểm không của hệ hở, để xảy ra sự triệt tiêu điểm không-điểm cực: .3 5s = − 69 Phương pháp gán điểm cực 3 213 73.5947 167.9733 Đa thức đặc trưng mong muốn: s s s+ + + Chuyển mô hình hàm truyền đạt về dạng mô hình trạng thái chuẩn điều khiển: [ ] 0 1 0 0 0 0 1 , 0 , 100 20 0 0 4 5 1 A B C ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ Áp dụng phương pháp thiết kế gán điểm cực ta suy ra vector K như sau: [ ] [ ]1 2 3, , 167.9733,69.5947,8K k k k= = Khi đó, hàm truyền đạt của hệ kín là: ( ) ( )3 2 20 513 73.5947 167.9733cl s G s s s s += + + + 70 Phương pháp gán điểm cực Kết quả mô phỏng kiểm chứng trên Matlab: Step Response Time (sec) A m p l i t u d e 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 71 Phương pháp gán điểm cực Loại bỏ sai lệch tĩnh bằng bộ tiền xử lý: Vw Chọn: ( ) 1 1.68 0cl V G = = 72 Phương pháp gán điểm cực Kết quả mô phỏng kiểm chứng trên Matlab: Step Response Time (sec) A m p l i t u d e 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 73 Bộ điều khiển tối ưu LQR • Bài toán: Xét hệ Tìm bộ điều khiển phản hồi trạng thái , với sao cho chỉ tiêu tích phân sau đây có giá trị nhỏ nhất ? u Kx= − x Ax Bu y Cx Du = +⎧⎨ = +⎩ [ ]1 2, ,..., nK k k k= ( ) 0 T Tx Qx u Ru dt ∞ +∫ Trong đó, Q là ma trận đối xứng bán xác định dương, R là ma trận đối xứng xác định dương. 74 Bộ điều khiển tối ưu LQR • Các bước tìm vector K: – Giải phương trình đại số Ricatti sau đây để tìm ma trận đối xứng xác định dương P: . – Xác định vector K như sau: . • Tìm bộ điều khiển LQR sử dụng Matlab: – lqr(A,B,Q,R) ; – [K,P,E]=lqr(A,B,Q,R) 1 0T TA P PA PBR B P Q−+ − + = 1 TK R B P−= 75 Bộ điều khiển tối ưu LQR Ví dụ: Cho hệ có mô hình trạng thái: , với:x Ax Bu= + Tìm bộ điều khiển tối ưu LQR, cho biết chỉ tiêu tích phân là: 0 1 0 , 0 1 1 A B⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ( ) 0 T Tx Qx u Ru dt ∞ +∫ 1 0 , 1 0 1 Q R⎡ ⎤= =⎢ ⎥⎣ ⎦ 76 Cơ sở các hệ thống điều khiển số 77 • Hệ điều khiển liên tục và hệ điều khiển số: Cơ sở các hệ thống điều khiển số • Cấu trúc cơ sở của các hệ thống điều khiển số: 78 Cơ sở các hệ thống điều khiển số • Trích mẫu tín hiệu trong hệ thống điều khiển số: 79 ( ) ( ) ( )* 0k r t r t t kTδ∞ = = −∑ Cơ sở các hệ thống điều khiển số • Phép biến đổi Z: Ảnh Z của tín hiệu rời rạc được định nghĩa như sau: { }0 1, ,..., ,...kx x x ( ) k 0 kX z x z ∞ −=∑ 80 Cơ sở các hệ thống điều khiển số • Phép biến đổi Z: Ảnh Z của tín hiệu rời rạc được định nghĩa như sau: { }0 1, ,..., ,...kx x x ( ) k 0 kX z x z ∞ −=∑ 81 Cơ sở các hệ thống điều khiển số • Rút gọn sơ đồ khối trên miền Z: 82 Cơ sở các hệ thống điều khiển số • Mô hình hóa hệ thống điều khiển số 83 Cơ sở các hệ thống điều khiển số • Mô hình hóa hệ thống điều khiển số 84 Cơ sở các hệ thống điều khiển số • Mô hình hóa hệ thống điều khiển số 85 Cơ sở các hệ thống điều khiển số • Mô hình hóa hệ thống điều khiển số 86 Cơ sở các hệ thống điều khiển số • Mô hình hóa hệ thống điều khiển số 87 Cơ sở các hệ thống điều khiển số • Mô hình hóa hệ thống điều khiển số 88 Cơ sở các hệ thống điều khiển số • Mô hình hóa hệ thống điều khiển số 89 Cơ sở các hệ thống điều khiển số 90 • Tính chất ổn định của hệ điều khiển số Cơ sở các hệ thống điều khiển số • Tính chất ổn định của hệ thống điều khiển số 91 Cơ sở các hệ thống điều khiển số • Thiết kế trên miền thời gian xấp xỉ liên tục 92 Cơ sở các hệ thống điều khiển số • Thiết kế trên miền thời gian xấp xỉ liên tục 93 Cơ sở các hệ thống điều khiển số • Thiết kế trên miền thời gian xấp xỉ liên tục 94 Cơ sở các hệ thống điều khiển số • Thiết kế trên miền thời gian xấp xỉ liên tục 95 Cơ sở các hệ thống điều khiển số • Thiết kế trên miền thời gian xấp xỉ liên tục: – Lựa chọn tần số trích mẫu: Tần số trích mẫu chọn gấp 30 lần dải thông mong muốn của hệ kín. Ví dụ: Đối tượng được điều khiển bằng bộ điều khiển . Hãy chuyển công thức của luật điều khiển về dạng có thể cài đặt được trên máy tính trong hai trường hợp: , ? So sánh đáp ứng của hệ kín khi sử dụng bộ điều khiển số với khi sử dụng bộ điều khiển tương tự ? ( ) 1 ( 1) G s s s = + ( ) 270 10 sD s s += + 20sf Hz= 40sf Hz= 96 Cơ sở các hệ thống điều khiển số • Lời giải: ( ) ( )( ) ( ) ( ) ( ) ( ) 270 10 70 2 10 10 70 140 U s sD s s U s s E s E s s du deu e dt dt += = ⇒ + = ++ ⇒ + = + Áp dụng công thức xấp xỉ bậc nhất (công thức Euler) cho thành phần đạo hàm ta có: 1 1 , k k k k t kT t kT u u e edu de dt T dt T + + = = − −≅ ≅ Rút ra phương trình sai phân (dạng có thể thực thi trên máy tính): 97 ( ) ( ) 1 1 1 1 10 70 140 1 10 70 140 70 k k k k k k k k k k u u e eu e T T u T u e T e + + + + − −+ = + ⇒ = − + + − • Khi f=40Hz thì T=0.025 s, ta có phương trình sai phân cụ thể như sau: Cơ sở các hệ thống điều khiển số • Khi f=20Hz thì T=0.05 s, ta có phương trình sai phân cụ thể như sau: 1 10.75 70 66.5k k k ku u e e+ += + − 1 10.5 70 63k k k ku u e e+ += + − • Mô phỏng trên Matlab để so sánh đáp ứng với tín hiệu bước nhảy đơn vị của hệ điều khiển liên tục và hệ điều khiển số tương ứng với 2 giá trị tần số trích mẫu khác nhau. Kết quả mô phỏng như trong trang slide tiếp theo. 98 Cơ sở các hệ thống điều khiển số Nhận xét: Khi tần số trích mẫu là 40Hz (lớn gấp 30 lần dải thông của hệ kín), thì đáp ứng của hệ điều khiển số gần giống như đáp ứng của hệ điều khiển liên tục. Trong khi đó, khi tần số trích mẫu là 20Hz (lớn gấp 15 lần dải thông của hệ kín) thì đáp ứng của hệ điều khiển số có độ quá điều chỉnh lớn hơn khá rõ rệt so với hệ điều khiển liên tục. 0 0.5 1 1.5 2 2.5 3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Step Response Time (sec) A m p l i t u d e Continuous f=20Hz f=40Hz 99 Phụ lục Phụ lục 1: Ảnh Laplace và ảnh Z của một số tín hiệu cơ bản 100
File đính kèm:
- Bài giảng Thiết kế hệ thống điều khiển.pdf