Bài giảng Siêu cao tần - Chương 3: Ma trận tán xạ
hỉ quan tâm đến quan hệ vào ra mà không cần quan
tâm đến cấu trúc bên trong của mạng Người
ta đưa ra các khái niệm: Hàm truyền, ma trận đặc
tính (ma trận trở kháng [Z], ma trận dẫn nạp [Y], ma
trận H, ma trận ABCD, )
Chöông III MA TRAÄN TAÙN XAÏ I. Daãn Nhaäp Maïng 2 Cöûa 1I 2I 1V 2VCöûa 1 Cöûa 2 Chæ quan taâm ñeán quan heä vaøo ra maø khoâng caàn quan taâm ñeán caáu truùc beân trong cuûa maïng Ngöôøi ta ñöa ra caùc khaùi nieäm: Haøm truyeàn, ma traän ñaëc tính (ma traän trôû khaùng [Z], ma traän daãn naïp [Y], ma traän H, ma traän ABCD,) ⇒ Maïng N Cöûa Cöûa 1 Cöûa 2 Cöûa j Cöûa N 1I 1V 2V 2I jVjI NI NV 0Z LZ E I V 0 L EI Z Z = + 0 . L L EV Z Z Z = + Ñeå toái ña coâng suaát ñöa ñeán taûi: *0LZ Z= AÙp hoaëc doøng taïi moãi ñieåm ñeàu coù theå xem nhö toång cuûa 2 thaønh phaàn soùng tôùi (incident) vaøsoùng phaûn xaï (reflection). ;i r i rV V V I I I= + = − 0Z * 0Z E iI iV Soùng doøng ñieän tôùi chính laø doøng ñieän trong maïch khi coù söï phoái hôïp trôû khaùng: * 0 0 02 i E EI Z Z R = =+ Töông töï, Soùng ñieän aùp tôùi : * * 0 0 * 0 0 0 . . 2i E Z E ZV Z Z R = =+ Quan heä giöõa Soùng ñieän aùp tôùi vaø soùng doøng ñieän tôùi: * 0 .i iV Z I= 0Z LZ E I V Soùng phaûn xaï ñieän aùp: r iV V V= − * 0 * 0 0 0 .. L r L E ZE ZV Z Z Z Z = −+ + * 0 0 * 0 0 . .−= + L r i L Z Z ZV V Z Z Z Soùng phaûn xaï doøng ñieän: ( )r iI I I= − − * 0 * 0 0 0 0 .Lr i L L Z ZE EI I Z Z Z Z Z Z −= − =+ + + Quan heä giöõa Soùng ñieän aùp phaûn xaï vaø soùng doøng ñieän phaûn xaï: 0.r rV Z I= Maïng N Cöûa Cöûa 1 Cöûa 2 Cöûa j Cöûa N 1I 1V 2V 2I jV jI NI NV 1E 01Z 2E 02Z jE0 jZ NE 0NZ 01 0 0 [ ] 0 0 N Z Z Z ⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠ % Ma traän trôû khaùng chuaån: Ma traän ñieän aùp, doøng ñieän tôùi vaø phaûn xaï: 1 [ ] i i iN V V V ⎛ ⎞⎜ ⎟= ⎜ ⎟⎝ ⎠ # 1[ ] r r rN V V V ⎛ ⎞⎜ ⎟= ⎜ ⎟⎝ ⎠ # 1 [ ] i i iN I I I ⎛ ⎞⎜ ⎟= ⎜ ⎟⎝ ⎠ # 1 [ ] r r rN I I I ⎛ ⎞⎜ ⎟= ⎜ ⎟⎝ ⎠ # Ma traän Taùn Xaï cuûa maïng N cöûa: [S] [ ] [ ].[ ]b aS= Ma traän taùn xaï theå hieän quan heä giöõa Soùng Tôùi [a] vaø Soùng Veà [b] taïi caùc cöûa. 11 12 1 21 22 2 2 1 1 1 . N N NN N NNN S S S S S S S S ab ab S ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⎡ ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎤⎢ ⎥ =⎢ ⎥⎢ ⎠⎥⎣ ⎦ ⎝ " "# # " 2) Quan heä giöõa soùng tôùi vaø soùng veà vôùi ñieän aùp, doøng ñieän. ja jb jI jV 0 jZ jE Cöûa j 0 .j j j jE V Z I= + Ta cuõng coù: ;j ij rj j ij rjV V V I I I= + = − Vaø: * 0 0. ; .ij j ij rj j rjV Z I V Z I= = * 0 0 0. ( ) ( )j j j j oj ij j rj j ij rjE V Z I Z I Z I Z I I⇒ = + = + + − * 0 02 .j oj ij j ij j ijE Z I Z I R I⇒ = + = 0 0 0 . 2 2 j j j j ij j j E V Z I I R R +⇒ = = 00 0 . . 2 j j j j j ij j V Z I a R I R +⇒ = = Quan heä cuûa soùng veà theo doøng, aùp taïi cöûa j: ;j ij rj j ij rjV V V I I I= + = − Vaø: * 0 0. ; .ij j ij rj j rjV Z I V Z I= = * * * 0 0 0. ( ) ( )j j j oj ij j rj j ij rjV Z I Z I Z I Z I I⇒ − = + − − * * 0 0 0. 2 .j j j j rj oj rj j rjV Z I Z I Z I R I⇒ − = + = * 0 0 . 2 j j j rj j V Z I I R −⇒ = * 0 0 0 . . 2 −⇒ = = j j jj j rj j V Z I b R I R Ta cuõng coù: Toång quaùt hoaù cho N cöûa: [ ] [ ] [ ] [ ] [ ]{ }1/ 20 01 . . .2a R V Z I−= + [ ] [ ] [ ] [ ]{ }1/ 2 *0 01 . . .2b R V Z I− ⎡ ⎤= − ⎣ ⎦ Tính Vaø Theo , :j j j jV I a b * * 0 0 0 0 0 0 0 0 . . . 2 2 2 + − +− = − = =j j j j j j j jj j j j j j j j V Z I V Z I Z Z a b I R I R R R * 0 0 0 02 −+ = +j j jj j j j j V Z Z a b I R R 0j 0jNeáu Z =R laø soá thöïc : 0 ⇒ + = jj j j V a b R 3) Quan heä giöõa coâng suất với soùng tôùi vaø soùng veà. jI jV 0 jR jE Cöûa j ijP rjP jP Coâng suaát truyeàn vaøo cöûa j: ( )*1 Re .2j j jP V I=( ) ( ){ }* *0 01 Re . /2= + −j j j j j j jP R a b a b R { }* * * * *1 Re ( )2= − + −j j j j j j j j jP a a a b a b b b{ }2 212⇒ = −j j jP a b 4) YÙ Nghóa Vaät Lyù Cuûa Caùc Heä Soá Trong Ma traän [S] Soùng tôùi taïi cöûa j: 00 0 . . 2 += = j j jj j ij j V R I a R I R Soùng Veà taïi cöûa j: 00 0 . . 2 −= = j j jj j rj j V R I b R I R 01R 1E 1I 1V 02R 2E 2V 2I Maïng Hai Cöûa [S] 1a 1b 2a 2b YÙ nghóa cuûa 11 :S 11 12 21 1 1 22 2 2 . ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎛ ⎞⎜ ⎟⎝ ⎠ ⎦ S S S S b a b a 1 11 1 12 2 2 21 1 22 2 . . . . = +⎧⇔ ⎨ = +⎩ b S a S a b S a S a 1 11 1 02= = a bS a 2 0:=a Coù nghóa khoâng coù soùng vaøo cuûa 2 , Töùc laø: Nguoàn E2 bò trieät tieâu vaø coù phoái hôïp trôû khaùng ôû cöûa 2. 01R 1E 1I 1V 02R Maïng Hai Cöûa [S] 1a 1b 2b 11S 2I 2V 1 01 1 1 01 . 2 += V R Ia R 1 01 1 1 01 . 2 −= V R Ib R 1 11 1 02= ⇒ = a bS a 2 02 1 01 1 11 1 01 1 0, . . Taûi= −⇒ = + E R V R IS V R I 1 11 1 2 02 : 0, Ñaët Laø trôû khaùng ngo õvaøo trong tröôøng hôïp : Taûi = = VZ I E R 11 01 11 11 01 −⇒ = + Z RS Z R 1 = Γ 01R 1E 1I 1V 02R Maïng Hai Cöûa [S] 1a 1b 2b 11 1= ΓS 2I 2V YÙ nghóa cuûa 21 :S 1 11 1 12 2 2 21 1 22 2 . . . . = +⎧⎨ = +⎩ b S a S a b S a S a 2 21 1 02= = a bS a 01R 1E 1I 1V 02R Maïng Hai Cöûa [S] 1a 1b 2b 2I 2V Heä soá theå hieän heä soá truyeàn ñaït töø cöûa 1 sang cöûa 221 :S 2 2 22 2 21 2 2 1 0 12 1 2 1 2= = = a bb S a a 01R 1E 1I 1V 02R Maïng Hai Cöûa [S] 1a 1b 2b 2I 2V Heä soá theå hieän heä soá truyeàn ñaït coâng suaát töø cöûa 1 sang cöûa 2 trong ñieàu kieän cöûa 2 phoái hôïp trôû khaùng. 2 21 :S 2 1 1 1 2 =iP a 22 212=rP b YÙ nghóa cuûa 22 :S 1 11 1 12 2 2 21 1 22 2 . . . . = +⎧⎨ = +⎩ b S a S a b S a S a 2 22 2 01= = a bS a 1 0:=a Coù nghóa khoâng coù soùng vaøo cuûa 1 , Töùc laø: Nguoàn E1 bò trieät tieâu vaø coù phoái hôïp trôû khaùng ôû cöûa 1. 01R 2E 1I 1V 02RMaïng Hai Cöûa [S] 1b 2b 22S 2I 2V 2a 2= Γ YÙ nghóa cuûa 12 :S 1 11 1 12 2 2 21 1 22 2 . . . . = +⎧⎨ = +⎩ b S a S a b S a S a 1 12 2 01= = a bS a Heä soá theå hieän heä soá truyeàn ñaït töø cöûa 2 sang cöûa 112 :S 01R 2E 1I 1V 02RMaïng Hai Cöûa [S] 1b 2b 22S 2I 2V 2a 5) Ño Caùc Heä Soá Ma traän taùn xaï [S] 0R E LZ Phaàn töû caàn ño [S] 1a 1b 2a 2b 1Γ Boä Chæ Thò Soùng Ñöùng 0R 2Γ 1 11 1 12 2 2 21 1 22 2 . . . . = +⎧⎨ = +⎩ b S a S a b S a S a 2 2 2 a b Γ = 1 11 1 12 2 2 2 21 1 22 2 2 . .( ) . .( ) = + Γ⎧⇒ ⎨ = + Γ⎩ b S a S b b S a S b 21 2 1 22 2 . 1 . Sb a S = − Γ 1 11 1 12 2 2 2 21 1 22 2 2 . .( ) . .( ) = + Γ⎧⎨ = + Γ⎩ b S a S b b S a S b ⎡ ⎤Γ= +⎢ ⎥− Γ⎣ ⎦ 21 12 2 1 1 11 22 21 . S Sb a S S ΓΓ = = + − Γ 1 21 12 2 1 11 1 22 21 . b S SS a S a) Duøng : Taûi baèng ñieän trôû chuaån 0LZ R= 2 0⇒Γ = 2 1 21 21 2 1 11 11 1 22 20 1 .a b S SS S a SΓ = ΓΓ = = + =− Γ b) Duøng : Taûi ngaén maïch 0LZ = 2 1⇒Γ = − Γ =− Γ = = − + 2 1 21 12 1 11 1 221 1b b S SS a S c) Duøng : Taûi hôû maïch LZ = ∞ 2 1⇒Γ = Γ = Γ = = + − 2 1 21 12 1 11 1 221 1c b S SS a S 1 11 (1)a SΓ = 21 211 11 22 (2) 1b S SS S Γ = − + 21 21 1 11 22 (3) 1c S SS S Γ = + − 21 21 22 11 1(2) (1 )( ) (4)bS S S S⇒ = + −Γ Thay (4), (1) vaøo (3) 22 11 1 1 11 22 (1 )( ) 1 b c S S S S + −Γ⇒ Γ = + − 22 1 1 1 1 22 (1 )( ) 1 a b c a S S + Γ −Γ⇒ Γ = Γ + − 22 12 21, ( . )S S S⇒ Neáu maïng 2 cöûa mang tính thuaän nghòch: 12 21S S⇒ = 1b 1a 2a 2b 1 2a b= 2 1a b= 0 1 1 0 S ⎛ ⎞⇒ = ⎜ ⎟⎝ ⎠ Baøi Taäp: Trôû Khaùng Chuaån 0Z Trôû Khaùng Chuaån 0Z 1b 1a 2a 2b Baøi Taäp: Trôû Khaùng Chuaån 01Z Trôû Khaùng Chuaån 02Z Z 2 11 01 02 011 11 11 1 11 01 02 010a Z Z Z Z ZbS a Z Z Z Z Z= − + −= = Γ = =+ + + 1 22 02 01 022 22 22 2 22 02 01 020a Z Z Z Z ZbS a Z Z Z Z Z= − + −= = Γ = =+ + + 2 2 21 1 0a bS a = = 6) Dòch Chuyeån Maët Phaúng Chuaån Cuûa Ma traän taùn xaï [S] 1l 2l 1l 2l II. Caùc Ma traän Ñaëc Tính Khaùc 1) Ma traän Trôû Khaùng 2) Ma traän Daãn Naïp 3) Ma traän ABCD 1 2 1 2 V VA B I C D I ⎡ ⎤ ⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ 1 2 2 1 2 2 V AV BI I CV DI = + = + 2 1 2 0I VA V = = 2 1 2 0V VB I = = 2 1 2 0I IC V = = 2 1 2 0V ID I = = . A B A B A B C D C D C Da b ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ Maïng 2 Cöûa a 1aI 2aI 1aV 2aV Maïng 2 Cöûa b 1bI 2bI 1bV 2bV 1I 1V 2I 2V Quan heä giöõa ma traän taùn xaï [S] vaø Ma traän trôû khaùng [Z] Quan heä giöõa ma traän taùn xaï [S] vaø Ma treän daãn naïp [Y] Quan heä giöõa ma traän taùn xaï [S] vaø Ma traän ABCD 11 22 01 02 21 11 22 01 02 21 11 22 21 01 02 11 22 02 01 21 11 12 12 21 (1 ) / / 2 (1 ) . / 2 (1 ) / 2 . (1 ) / / 2 A S S S Z Z S B S S S Z Z S C S S S S Z Z D S S S Z Z S S S S S S = + − −Δ = + + + Δ = − − −Δ = − + −Δ Δ = − 02 01 02 01 11 02 01 02 01 01 02 12 02 01 02 01 01 02 21 02 01 02 01 02 01 02 01 22 02 01 02 01 2( ) 2 AZ B CZ Z DZS AZ B CZ Z DZ AD BC Z Z S AZ B CZ Z DZ Z Z S AZ B CZ Z DZ AZ B CZ Z DZS AZ B CZ Z DZ + − −= + + + −= + + + = + + + − + − += + + +
File đính kèm:
- bai_giang_sieu_cao_tan_chuong_3_ma_tran_tan_xa.pdf