Bài giảng Green Energy Course Syllabus - Chapter 6: Energy storage + Electric vehicles - Nguyễn Hữu Phúc
Abstract
Energy storage technologies do not represent energy sources
Provide valuable added benefits to improve:
stability, power quality and security of supply.
Battery Technologies
Flywheel Technologies
Advanced / Super Capacitors
Superconducting Energy Storage Systems
erential state Equations ; – existence of derivative causality: Algebro Differential state Equation ; – systematic equation derivation (state equations, transfer function/ matrix) 3.c) Causality in Bond-Graphs : a prime importance for energetics 3.d) BG model of a wind turbine driving a equivalent DC generator MSe:Twt() I:JTot 1 Wind turbine Vv 1 I:Lm R:Rm f GY1 R:F m I:J m GCC Turbine/Generator Speed wt Twt the 2 I elements have been gathered : no more causality conflict Considering a “direct driven” generator (without multiplier) : OK for low powers 0 C:Cbus )(.... 2 1)( 2 = CVRSVT vVw Buck DC-DC converter MTF a,CH VoutVbus ILIbus I:L 1 Current control load storage batt 0 Towards MPPT for better efficiency !!! 3.d) MPPT from power control Method based on the Cp(λ) characterisitc knowledge: power control power reference: CP()=CPopt(opt) => Popt = Kopt.opt3 Power – rotation speed characteristic with Maximal power obtained if: kPref kW W s rad WP optopt fP W= 1W 1P 2W 2P 3W 3P opt4 W=W opt4 PP = 1 2 3 4 λ(opt) Cp(opt ) 3 3RSoptPC 2 1 optK =Pref = Kopt.3 Kopt.3 rot speed reference: CP()=CPopt(opt) => Popt = Kopt.opt3 3 optK Pref éol=W with Maximal power obtained if: kP 3 optK kP krefW W s rad WP optopt fP W= 1W 1P 2W 2P 3W 3P opt4 W=W opt4 PP = 1 2 3 4 λ(opt) Cp(opt ) 3 3RSoptPC 2 1 optK = 3.d) MPPT from speed control Method based on the Cp(λ) characterisitc knowledge: speed c ntrol Power – rotation speed characteristic Torque (current) reference: CP()=CPopt(opt) => Popt = Kopt.opt3 2.ΩoptKΩ optPref emT == 2W= optK ref emT opt wtwt 3ref em TTT == opt3 = ( )3 Convergence of algorithm 2 2W 2wtT 2ref emT 1wtT 1W 1 1ref emT W s rad mNT optopt fT W= λ(opt) Cp(opt) with 3.d) MPPT from torque (current) control Maximal power obtained if: Method based on the Cp(λ) characteristic knowledge: torque c ntrol 3 3 2 1 opt RSoptPC optK = Torque – rotation speed characteristic 3.d) BG model of a wind turbine driving a equivalent DC generator MSe:Twt() I:JWT 1 Wind turbine Vv 1 I:Lm R:Rm f GY1 R:F m I:J m DCG wt Twt (a) BuckDC-DC converter MTF a,CH 0 C:Cbus VoutVbus ILIbus I:L 1 )(.... 2 1)( 2 = CVRSVT vVw Current control & MPPT 3 3 2 1 opt RSoptPC optK = batV optPref LI = = 3.ΩoptKoptP Do it yourself & good luck on 20Sim!!! load storage batt 0 Xavier ROBOAM, Guillaume FONTES 1) Some reminders about Bond-Graphs Basics (X. Roboam) 2) Some examples on Bond graph modeling and 20 Sim simulations (X. Roboam & G. Fontes) a. Simulation of a current controlled DC DC buck chopper; b. Simulation of a DC machine : motor generator mode 3) Some reminders about Wind Turbine systems connected to a DC electrical machine; a. About aerodynamics and energy efficiency of wind turbines b. Simulating wind turbine torque/speed curves with inertia and defining a load torque characteristic: to analyze generator / load compatibility; c. Short reminders about “causality” issues d. MPPT control of a wind turbine system connected to a current controlled DC generator 4) System study of a wind turbine system connected to a low voltage 48V DC bus (X. Roboam) a. System description and analysis b. “DC equivalent modeling” of a PM synchronous generator – diode rectifier device coupled on low voltage (48V) DC bus 1st Week: Bond Graphs based wind turbine energy system design 4.a) Medium voltage (600V) DC bus coupling of wind & PV hybrid systems NB: this application is studied by LSE Tunis (Tunisia) in Cooperation with LAPLACE Toulouse (France) Two structures are convenient vV MS V600 busE batI PWM rectifier MS dcI dcU Diode rectifier C E (t) T (t) batI E (t) T (t) Boost chopper Hacheur survolteurBoost chopper vV 1 st structure 2 nd structure) • Very efficient but not cheap! PV-Gen PV-Gen • efficient, reliable and cheap • considered as better for low power WT (Mirecki PHD) Wind Turbine Savonius V600 busE 4.a) Low voltage (48V) DC bus coupling of wind & PV hybrid systems NB: this application is studied by LSE Tunis (Tunisia) in Cooperation with LAPLACE Toulouse (France) Two structures are convenient: 48V is the stadard for stand alone systems V48 busE 1 st structure • Very efficient but not cheap! • efficient, reliable and cheap • considered as better for low power WT (Mirecki PHD) vV MS batI PWM rectifier E (t) T (t) Buck chopperPV-Gen 2 nd structure) MS dcI dcU Diode rectifier C batI E (t) T (t) Buck chopper Buck chopper vV PV-Gen Wind Turbine V48 busE Wind Turbine First week 4.a) “DC equivalent modeling” of a PM synchronous generator – diode rectifier device coupled on low voltage (48V) DC bus NB: this application is studied by LSE Tunis (Tunisia) in Cooperation with LAPLACE Toulouse (France) Iéol PM SM buck 48 V Battery diode rectifier DC loads Iond IBat Wind turbine αw DC Bus 48V 0 5 10 15 20 temps {s} Pé ol _m ax {W } Pé ol _M PP T {W } 0 200 400 600 800 1000 PWTopt JbatmpptE,wtoptE %4,11%E = Current control & MPPT EWT-opt Pbatmppt 4.b) DC equivalent model of PM synch generator connected to a diode rectifier Iéol PM SM buck Batterie s 48 V diode rectifier DC loads Iond DC equivalent modelling IBat Wind turbine αw DC Bus 48V Tem M, ΩM PMSG (Generator) Es Rs Ls Is Vs Diode Rectifier IDC UDC Tem M, ΩM DCG (Generator) EDC RDC LDC IDC UDC 4.b) DC equivalent model of PM synch generator connected to a diode rectifier Tem M, ΩM PMSG (Generator) Es Rs Ls Is Vs Diode Rectifier IDC UDC Tem M, ΩM DCG (Generator) EDC RDC LDC IDC UDC Rs Is Ls cycl j Ls cycl Is Es Vs Rs Is Is Vs Es Rs Is j Ls cycl Is Es’ Es’ Vector diagram of synchronous generator With diode rectifier : cos j = 1 4.b) DC equivalent model of PM synch generator connected to a diode rectifier s s ss scycl sV E j.L . .I R .I= 2 2 s s scycl s s sV E (L . .I ) R .I= ' 2 2 s s scycl sE E (L . .I )= DC sf 3 6U V= DC sfI I6 = 2 2 DC s scycl DC s DC 6 6U E L I R I 3 6 = sDC s 2 DC scycl 2 DC s 3 6E E 6L 3 L 6R 3 R = = = em M p ex s s p ex M C 3 n I cos E n = = W em em M M s sP C 3 E I cos= W = sDC s p ex M p DC M emM emM s DC s p ex p DC 3 6 3 6E E n n C C I I 3 n cos n cos6 6 = = W = W = = = DC ex 3 6 = cos j = 1 4.b) DC equivalent model of PM synch generator connected to a diode rectifier Electromechanical conversion emM p DC sDC sDC p DC M C n I cos E n = = WGY EsDC I’sDC CemM WM sDC sDCI ' I cos= Magnetic reaction 22sDC sDC DC DCE ' E L I= sDC sDCE ' E cos= or sDC sDC I ' I cos = TF E’sDC I’sDC EsDC IsDC cos 4.b) DC equivalent model of PM synch generator connected to a diode rectifier Diode overlapping effect Equivalent scheme during switchingm: Overlapping time s DC 3 L I= DC UDµ=ArcCos(1- max sDC E3 LωI2 ) 'DC sDC s DC 3E E L I= emp s 3R L= 4.b) DC equivalent model of PM synch generator connected to a diode rectifier 1 1GYSe : Céol Céol ΩM Cem ΩM np.ΦDC EsDC EsDC’ EDC UDC IsDC’ IsDC IDC IDC I : Jtot R: ftot R: RDC I : LDC subt The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.Magn deviation P.M.S..G The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.overlapping Diode rectifier v(i) v(i) Mechanical mode Direct current generator (equivalent to SM+Diode Rectifier) Some REFERENCES • X. Roboam, S. Astier, ‘’Graphes de liens Causaux pour systèmes à énergie renouvelable’’, Techniques de l’Ingénieur, traité Génie Electrique, rubrique « systèmes pour les énergies renouvelables », D3970 (PARTIE 1) & D3971 (PARTIE 2), Aout 2006. • D. Karnopp, D. Margolis, R. Rosenberg, System Dynamics : Modeling and Simulation of Mechatronic Systems, John Wiley & sons, 2000 (3rd edition). • S. Astier , R. Saïsset , X. Roboam, Modelling and study of a solar car with embedded photovoltaic array and Li- ion storage, IMAACA'04, part of SCS I3M conference, Genoa, Italy, October 28-30, 2004. • M. Dali, J. Belhadj, X. Roboam, ”hybrid wind-photovoltaic power systems: Structure Complexity and Energy Efficiency, Control and Energy management”, numéro spécial, ”réseaux isolés” EJEE_RIGE, Volume 12, N°5-6, 2009, pp 669-700. • M. Dali, J. Belhadj, X. Roboam, “Hybrid Solar-Wind System with Battery Storage Operating in Grid-Connected and Standalone Mode: control and energy management, experimental investigation”, EGY-D-09-00098R1, Elsevier, journal of energy conversion and management • M. Dali, commande et gestion énergétique des systèmes hybrides pv – éolien, thèse de l’ENIT Tunis, Tunisie, soutenue le 24/01/2009 • A. Mirecki, X. Roboam, F. Richardeau, ‘Architecture cost and energy efficiency of small Wind Turbines : which system tradeoff?’, IEEE Transactions on Industrial Electronics, Vol 54, N°1, pp 660 – 670, February 2007.
File đính kèm:
- bai_giang_green_energy_course_syllabus_chapter_6_energy_stor.pdf