Bài giảng Giải tích mạng - Chương 2: Giải phương trình vi phân bằng phương pháp số - Lê Kim Hùng
2.1. GIỚI THIỆU.
Nhiều hệ thống vật lý phức tạp được biểu diễn bởi phương trình vi phân nó không có thể giải
chính xác bằng giải tích. Trong kỹ thuật, người ta thường sử dụng các giá trị thu được bằng
việc giải gần đúng của các hệ phương trình vi phân bởi phương pháp số hóa. Theo cách đó, lời
giải của phương trình vi phân đúng là một giai đoạn quan trọng trong giải tích số.
Trong trường hợp tổng quát, thứ tự của việc làm tích phân số là quá trình từng bước chính xác
chuổi giá trị cho mỗi biến phụ thuộc tương ứng với một giá trị của biến độc lập. Thường thủ
tục là chọn giá trị của biến độc lập trong một khoảng cố định. Độ chính xác cho lời giải bởi tích
phân số phụ thuộc cả hai phương pháp chọn và kích thước của khoảng giá trị. Một số phương
pháp thường xuyên dùng được trình bày trong các mục sau đây
à i4 = 0,02418 vào trong phương trình vi phân, ta được:
i’4 = 0,500 [ 1 + 3(0,02418)2]0,02418 = 0,47578
Dự đoán và giá trị chính xác, chỉ khác nhau một số hàng thập phân vì vậy không đòi hỏi
lặp lại nhiều lần. Kết quả sau từng bước được ghi vào bảng 2.4. Tại t9 giá trị dự đoán
của dòng điện là 0,11742 nhưng trong khi giá trị chính xác là 0,11639. Việc thực hiện
lặp lại bởi sự thay thế giá trị chính xác trong phương trình vi phân đã thu được i’9 =
0,87888. Cứ lần lượt dùng trong công thức sửa đổi để thu được ước lượng thứ hai cho i9
= 0,11640, trước khi kiểm tra giá trị chính xác. Thực hiện lặp lại trong tất cả các bước
để đảm bảo yêu cầu chính xác.
GIẢI TÍCH MẠNG
Trang 24
Th
ời
S
ức
D
òn
g
e n
+
e n
+1
k 1
k
2
gi
an
đ
iệ
n
đ
iệ
n
k
1
--
--
--
--
i n
+
--
-
k
2
i n
+
--
-
k
3
e
n+
1
i n
+
k 3
k 4
∆i
n
t
n
độ
ng
i n
2
2
2
e
n
0,
00
0
0
,0
00
0
,0
00
00
0
,0
00
00
0
,0
62
5
0
,0
00
00
0
,0
01
56
0
,0
00
78
0
,0
01
54
0
,1
25
0
,0
01
54
0
,0
03
09
0,
00
15
5
0,
02
5
0
,1
25
0
,0
01
55
0
,0
03
09
0
,1
87
5
0
,0
03
10
0
,0
04
61
0
,0
03
86
0
,0
04
59
0
,2
50
0
,0
06
14
0
,0
06
10
0,
00
46
0
0,
05
0
0
,2
50
0
,0
06
15
0
,0
06
10
0
,3
12
5
0
,0
09
20
0
,0
07
58
0
,0
09
94
0
,0
07
56
0
,3
75
0
,0
13
71
0
,0
09
03
0,
00
75
7
0,
07
5
0
,3
75
0
,0
13
72
0
,0
09
03
0
,4
37
5
0
,0
18
24
0
,0
10
48
0
,0
18
96
0
,0
10
46
0
,5
00
0
,0
24
18
0
,0
11
89
0,
01
04
7
0,
10
0
0
,5
00
0
,0
24
19
0
,0
11
89
0
,5
62
5
0
,0
30
14
0
,0
13
31
0
,0
30
84
0
,0
13
29
0
,6
25
0
,0
37
48
0
,0
14
68
0,
01
33
0
0,
12
5
0
,6
25
0
,0
37
49
0
,0
14
68
0
,6
87
5
0
,0
44
83
0
,0
16
06
0
,0
45
52
0
,0
16
04
0
,7
50
0
,0
53
53
0
,0
17
40
0,
01
60
5
0,
75
0
0
,0
53
54
0
,0
17
40
0
,8
12
5
0
,0
62
24
0
,0
18
74
0
,0
62
91
0
,0
18
72
0
,8
75
0
,0
72
26
0
,0
20
04
0,
01
87
3
0,
17
5
0
,8
75
0
,0
72
27
0
,0
20
04
0
,9
37
5
0
,0
82
29
0
,0
21
34
0
,0
82
94
0
,0
21
32
1
,0
00
0
,0
93
59
0
,0
22
60
0,
02
13
3
0,
20
0
1
,0
00
0
,0
93
60
0
,0
22
60
1
,0
00
0
0
,1
04
90
0
,0
22
29
0
,1
04
75
0
,0
22
30
1
,0
00
0
,1
15
90
0
,0
21
99
0,
02
23
0
0,
22
5
1
,0
00
0
,1
15
90
0
,0
21
99
1
,0
00
0
0
,1
26
90
0
,0
21
67
0
,1
26
74
0
,0
21
68
1
,0
00
0
,1
37
58
0
,0
21
37
0,
02
16
8
0,
25
0
1
,0
00
0
,1
37
58
0
,0
21
37
1
,0
00
0
0
,1
48
27
0
,0
21
05
0
,1
48
11
0
,0
21
05
1
,0
00
0
,1
58
63
0
,0
20
73
0,
02
10
5
0,
27
5
1
,0
00
0
,1
58
63
0
,0
20
73
1
,0
00
0
0
,1
69
00
0
,0
20
41
0
,1
68
84
0
,0
20
42
1
,0
00
0
,1
79
05
0
,0
20
09
0,
02
04
1
B
ản
g
2.
3:
G
iả
i b
ằn
g
ph
ươ
ng
p
há
p
Ru
ng
e-
K
ut
ta
n 0 1 2 3 4 5 6 7 8 9 10
11
12
Bảng 2.4: Bài giải bằng phương pháp của Milne.
GIẢI TÍCH MẠNG
Trang 25
N
Thời gian Sức điện Dòng điện Dòng điện
tn động en (dự đoán) in i’n (sửa đổi)
in
4
5
6
7
8
9
10
11
12
0,100 0,500 0,02418 0,47578 0,02419
0,125 0,625 0,03748 0,58736 0,03748
0,150 0,750 0,05353 0,69601 0,05353
0,175 0,875 0,07226 0,80161 0,07226
0,200 1,000 0,09359 0,90395 0,09358
0,225 1,000 0,11742 0,87772 0,11639
0,87888 0,11640+
0,250 1,000 0,13543 0,85712 0,13755
0,85464 0,13753+
0,275 1,000 0,16021 0,82745 0,15911
0,82881 0,15912+
0,300 1,000 0,17894 0,80387 0,17898
0,80382 0,17898+
+ : giá trị sửa đổi thứ hai thu được bởi vòng lặp
d. Phương trình dùng phương pháp Picard hàm tương đương khởi đầu cho i, cận i0 = 0
là:
[ ]dtiiteii t∫ −−+= 0 30 3)(
Thay thế e(t) = 5t và giá trị ban đầu i0 = 0
∫ == t tdtti 0
2
)1(
2
55
Thay i(1) cho i trong phương trình tích phân, thu được:
56
375
6
5
2
5
8
375
2
55
732
0
62
)2( tttdtttti
t −−=⎟⎟⎠
⎞
⎜⎜⎝
⎛ −−= ∫
Quá trình tiếp tục, ta được:
dttttttti
t∫ ⎟⎟⎠
⎞
⎜⎜⎝
⎛ +−+−+−=
0
87632
)3( ....
8
125
7
375
8
375
6
5
2
55
....
56
375
24
5
6
5
2
5 7432 +−+−= tttt
dttttttti
t∫ ⎟⎟⎠
⎞
⎜⎜⎝
⎛ ++−−+−=
0
76432
)4( ....
7
375
8
375
24
5
6
5
2
55
....
56
375
2424
5
6
5
2
5 75432 +−−+−= ttttt
Giới hạn chuổi sau số hạn bậc bốn là:
24
5
6
5
2
5 432 ttti +−=
Nếu hàm dùng xấp xỉ i chính xác bốn số thập phân với số hạn xấp xỉ đầu tiên không chú
ý đến sai số lớn thì .
5log t [ log0,00120
log t [ 9,415836 - 10
t [ 0,2605
GIẢI TÍCH MẠNG
Trang 26
Giá trị giới hạn là hàm xấp xỉ hợp lý. Vì vậy, trong ví dụ này hàm có thể dùng chỉ để
thu được y cho trong khoảng 0 [ t [ 0,2; Bởi vì cho t > 0,2 thì e(t) = 1. Cho nên, hàm
xấp xỉ khác phải chính xác cho trong khoảng 0,2 [ t[ 0,3 như sau:
( )dtiii t∫ −−+= 2,0 33109367,0
( ){ } 0,2) -0,90386(t 0,09367 +=−−+= ∫ dti t 2,0 3)1( 09367,0309367,0109367,0
( ) [ ]{ }dttti t∫ −+−−−−+= 2,0 3)2( )2,0(90386,009367,032,090386,009367,0109367,0
( ){ }dttttt∫ −−−−−−+= 2,0 32 )2,0(45089,22,076189,0)2,0(07897,1190386,009367,0
dtttttx
x
⎭⎬
⎫
⎩⎨
⎧ −−−−−−−
+=
4
)2,0(45089,2
3
)2,0(76189,0
2
)2,0(07897,1)2,0(
90386,009367,0
432
Cuối cùng, ta có:
i(3) = 0,09367 + 0,90386(t - 0,2) - 0,48762(t - 0,2)2 -
- 0,05420(t - 0,2)3 - 0,30611(t - 0,2)4 + 0,86646(t - 0,2)5 ....
Chuỗi giới hạn, hàm xấp xỉ là:
i = 0,09367 + 0,90386(t - 0,2) -
- 0,48762(t - 0,2)2 - 0,05420(t - 0,2)3 - 0,30611(t - 0,2)4
Cho i hiệu chỉnh trong bốn số thập phân, ta có:
0,86646(t - 0,2)5 [ 0,00005
(t - 0,2) [ 0,14198
Hàm hợp lý cho trong khoảng 0,2 [ t [0,342
Giá trị thu được bằng phương pháp Picard được đưa vào trong bảng 2.5.
2.5. SO SÁNH CÁC PHƯƠNG PHÁP.
Trong bài giải của phương trình vi phân hàm quan hệ giữa biến phụ thuộc y và biến độc
lập x cần tìm để thỏa mãn phương trình vi phân. Bài giải trong giải tích là rất khó và có
một số vấn đề không thể tìm được. Phương pháp số dùng để tìm lời giải bằng cách biểu
diễn y như một số hàm của biến độc lập x từ mỗi giá trị xấp xỉ của y có thể thu được
bằng sự thay thế hoàn toàn hay biểu diễn tương đương quan hệ giữa các giá trị liên tiếp
của y xác định cho việc chọn giá trị của x. Phương pháp Picard là phương pháp số kiểu
đầu tiên. Phương pháp Euler, Runge-Kutta, và Milne là ví dụ cho kiểu thứ hai.
Khó khăn chủ yếu phát sinh từ phương pháp xấp xỉ y bằng hàm số, như phương pháp
Picard, tìm thấy trong lần lặp lại sự tích phân hiện tại phải thực hiện để thu được hàm
thỏa mãn. Vì vậy phương pháp này là không thực tế trong hầu hết các trường hợp và ít
được dùng.
GIẢI TÍCH MẠNG
Trang 27
Bảng 2.5: Giải bằng phương pháp Picard.
n Thời gian tn Sức điện động en Dòng điện in
0
1
2
3
4
5
6
7
8
9
10
11
12
0
0,025
0,050
0,075
0,100
0,125
0,150
0,175
0,200
0,225
0,250
0,275
0,300
0
0,125
0,250
0,375
0,500
0,625
0,750
0,875
1,000
1,000
1,000
1,000
1,000
0
0,00155
0,00615
0,01372
0,02419
0,03749
0,05354
0,07229
0,09367
0,11596
0,13764
0,15868
0,17910
Các phương pháp theo kiểu thứ hai đòi hỏi phép tính số học đơn giản đo đó thích hợp
cho việc giải bằng máy tính số của các phương trình vi phân. Trong trường hợp tổng
quát, đơn giản quan hệ đòi hỏi dùng trong một khoảng nhỏ cho các biến độc lập nhưng
ngược lại nhiều phương pháp phức tạp có thể dùng trong khoảng tương đối lớn tốn
nhiều công sức trong việc chính xác hóa lời giải. Phương pháp Euler là đơn giản nhất,
nhưng trừ khi khoảng tính rất nhỏ thì dùng nó cũng không đúng với thực tế. Phương
pháp biến đổi Euler cũng sử dụng đơn giản và có thêm thuận lợi kiểm tra hệ thống vốn
có trong quá trình thu được để cải thiện sự ước lượng cho y. Phương pháp có sự chính
xác giới hạn, vì vậy đòi hỏi dùng khoảng giá trị nhỏ cho biến độc lập. Phương pháp
Runge-Kutta đòi hỏi số rất lớn của phép tính số học, nhưng kết quả cũng không chính
xác.
Phương pháp dự đoán sửa đổi của Milne là ít khó khăn hơn phương pháp Runge-Kutta và so
sánh được độ chính xác của bậc h5. Vì vậy, phương pháp của Milne đòi hỏi có bốn giá trị ban
đầu cho biến phụ thuộc phải thu được bằng một số phương pháp khác, hầu như phương pháp
biến đổi Euler hay phương pháp Runge-Kutta, là như nhau. Trong sự ứng dụng máy tính cho
phương pháp số. Chương trình đòi hỏi bắt đầu lời giải như phương pháp của Milne. Lời giải
tiếp tục dùng công thức khác cho dự đoán và sau đó sửa chữa giá trị của y cung cấp quá trình
hệ thống cho kiểm tra tốt bằng sửa chữa ước lượng ban đầu. Nếu sự khác nhau giữa dự đoán và
giá trị chính xác là đáng kể, khoảng tính có thể được rút gọn lại. Khả năng trong phương pháp
của Milne không có hiệu lực trong phương pháp Runge-Kutta.
GIẢI TÍCH MẠNG
Trang 28
Bài tập:
2.1. Giải phương trình vi phân.
yx
dx
dy −= 2
Cho 0 [ t [ 0,3; với khoảng phương trình 0,05 và giá trị ban đầu x0 = 0 và y0 = 1, bằng
các phương pháp số sau đây.
Euler
Biến đổi Euler.
Picard
Xấp xỉ bậc bốn Runge-Kutta
Milne dùng giá trị bắt đầu thu được phương pháp Runge-Kutta
2.2. Giải bằng phương pháp biến đổi Euler hệ phương trình vi phân.
y
dt
dx 2=
2
x
dt
dy −=
Cho 0 [ t [ 1,0; Với khoảng phương trình 0,2 và giá trị ban đầu i0 = 0,x0 = 0 và
y0 = 1
2.3. Giải bằng xấp xỉ bậc bốn Runge-Kutta phương trình vi phân bậc hai.
y’’ = y + xy’
Cho 0 [ x [ 0,4; Với khoảng phương trình 0,1 và giá trị ban đầux0 = 0,y0 = 1, và y’0 = 0
File đính kèm:
bai_giang_giai_tich_mang_chuong_2_giai_phuong_trinh_vi_phan.pdf

