Bài giảng Fundamentals of Control Systems - Chapter 6: Design of control systems - Huỳnh Thái Hoàng
Content
Introduction
Effect of controllers on system performance
Control systems design using the root locus method
Control systems design in the frequency domain
Design of PID controllers
Control systems design in state-space
Design of state estimator
(cont’) The desired characteristic equation: 0)2)(( 22 nnssas 0)648)(( 2 ssas 064)648()8( 23 asasas (2) Balancing the coefficients of the equations (1) and (2), we have: aK 810010 25156 aK aKP D 64100 648100100 541 14,12 . P K K a I ,D Conclusion: G 5411006412)( 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 81 s s sC ,, Manual tuning of PID controllers Effect of increasing a parameter of PID controller independently on closed-loop performance: Para- meter Rise time POT Settling time Steady- state error Stability KP Decrease Increase Small change Decrease Degrade KI Decrease Increase Increase Eliminate Degrade KD Minor change Decrease Decrease No effect Improve if K smallD 6 December 2013 82© H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ A d f l t i f PID t ll Manual tuning of PID controllers (cont.) proce ure or manua un ng o con ro ers: 1. Set KI and KD to 0, gradually increase KP to the critical i K (i th i k th l d l tga n cr .e. e ga n ma es e c ose - oop sys em oscilate) 2. Set KP Kcr /2 3. Gradually increase KI until the steady-state error is eliminated in a sufficient time for the process (Note that too much KI will cause instability). 4. Increase KD if needed to reduce POT and settling time (Note that too much KD will cause excessive response and overshoot) 6 December 2013 83© H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ Control systems design in state-space using pole placement method 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 84 Controllability )()()( tutt BAxxC id t )()( tty Cx ons er a sys em: The system is complete state controllable if there exists an unconstrained control law u(t) that can drive the system from an initial state x(t0) to a arbitrarily final state x(tf) in a finite time interval t0 t tf . Qualitatively, the system is state controllable if each state variable can be influenced by the input. y(t) 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 85 Signal flow graph of an incomplete state controllable system Controllability condition )()()( ttt BAxx )()( tty u Cx System: Controllability matrix ][ 12 BABAABB nC The necessary and sufficient condition for the controllability is: nrank )(C N t th t “ t ll bl ” i t d f “ l t o e: we use e erm con ro a e ns ea o comp e e state controllable” for short. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 86 Controllability – Example )()()( tutt BAxx )()( tty Cx Consider a system where: 10 5 32A 2 B 31C E l h ll bili f h Solution: Controllability matrix: va uate t e contro a ty o t e system. ABBC Because: 16 2 2 5 C 84)det( C 2)( Crank 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 87 The system is controllable State feedback control r(t) u(t) y(t)x(t) + C)()()( tutt BAxx K Consider a system described by the state equations: )()( )()()( tty tutt Cx BAxx The state feedback controller: )()()( ttrtu Kx )()(][)( trtt BxBKAx The state equations of the closed-loop system: 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 88 )() ty(t Cx Pole placement method If the system is controllable then it is possible to determine, the feedback gain K so that the closed-loop system has the poles at any location. Step 1: Write the characteristic equation of the closed-loop system 0]det[ BKAIs (1) Step 2: Write the desired characteristic equation: n 0)( 1 i ips )1( nip th d i d l (2) Step 3: Balance the coefficients of the equations (1) and (2), , ,i are e es re po es 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 89 we can find the state feedback gain K. Pole placement method – Example Problem: Given a system described by the state state - equation: )()()( tutt BAxx )()( tty Cx 010 0 100C 100A 3B 374 1 Determine the state feedback controller )()()( ttrtu Kx so that the closed-loop system has complex poles with and the third pole at 20. 10;6,0 n 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 90 Pole placement method – Example (cont’) Solution The characteristic equation of the closed-loop system: 0]det[ BKAIs 03 0 100 010 010 001 d t kkk 1374100 e 321 s The desired characteristic equation: (1)0)12104()211037()33( 313212323 kkskkkskks 0)2)(20( 22 nnsss (2)23 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 91 0200034032 sss Pole placement method – Example (cont’) B l th ffi i t f th ti (1) d (2) ha ance e coe c en s o e equa ons an , we ave: 3233 32 kk 200012104 340211037 21 321 kk kkk Solve the above set of equations, we have: 578220k 48217 839,3 , 2 1 k k ,3 482178393578220K Conclusion: 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 92 ,,, D i f t t ti tes gn o s a e es ma ors 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 93 The concept of state estimation To be able to implement state feedback control system it is, required to measure all the states of the system. However in some applications we can only measure the, , output, but cannot measure the states of the system. The problem is to estimate the states of the system from the output measurement. State estimator (or state observer) 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 94 Observability )()()( tutt BAxx )()( tty Cx Consider a system: The system is complete state observable if given the control law u(t) and the output signal y(t) in a finite time interval t0 t tf , it is possible to determine the initial states x(t0). Qualitatively the system is state observable if all state variable, x(t) influences the output y(t). y(t) 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 95 Signal flow graph of an incomplete state observable system Observability condition )()()( tutt BAxxS t )()( tty Cx ys em It is necessary to estimate the state from mathematical )(ˆ tx Observability matrix: C model of the system and the input-output data. 2CA CA O 1nCA The necessary and sufficient condition for the observability is: 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 96 nrank )(O Observability – Example )()()( tutt BAxx )()( tty Cx Consider the system 10 1where: 32 A 2 B 31C Solution: Observability matrix: Evaluate the observability of the system. CA C O 8 3 6 1 O Because 10)det( O 2)( Orank 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 97 The system is observable State estimator u(t) y(t)x(t)r(t) )()()( tutt BAxx C + CB L )(ˆ tx + ++ )(ˆ ty A K )(ˆ)(ˆ ))(ˆ)(()()(ˆ)(ˆ tty tytytutt xC LBxAx State estimator: 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 98 T nlll ][ 21 Lwhere: Design of state estimators Requirements: The state estimator must be stable, estimation error should approach to zero. Dynamic response of the state estimator should be fast enough in comparison with the dynamic response of the control loop. All the roots of the equation locates i th h lf l ft l It is required to chose L satisfying: 0)det( LCAsI n e a - e s-p ane. The roots of the equation are further from the imaginary axis than the roots of the equation 0)det( LCAsI 0)det( BKAsI Depending on the design of L, we have different state estimator: Luenberger state observer 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 99 Kalman filter Procedure for designing the Luenberger state observer St 1 W it th h t i ti ti f th t t bep : r e e c arac er s c equa on o e s a e o server 0]det[ LCAIs (1) Step 1: Write the desired characteristic equation: 0)( n ips (2) 1i ),1( , nipi are the desired poles of the state estimator Step 3: Balance the coefficients of the characteristic equations (1) and (2), we can find the gain L. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 100 Design of state estimators – Example Problem: Given a system described by the state equation: )()( )()()( tutt C BAxx tty x 010 0 001C 100A 3B 374 1 Assuming that the states of the system cannot be directly measured. Design the Luenberger state estimator so that the poles of the state estimator lying at 20, 20 and 50. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 101 Design of state estimators – Example (cont’) Solution The characteristic equation of the Luenberger state estimator: 0]det[ LCAIs 0001100 010 010 001 d t 1 l l 374100 e 3 2 l s The desired characteristic equation: (1)0)457()73()3( 32121 2 1 3 lllsllsls 0)50()20( 2 ss 23 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 102 (2)020000240090 sss Design of state estimators – Example (cont’) B l i th ffi i t f th (1) d (2) l d ta anc ng e coe c en s o e equ. an ea s o: 9031l 20000437 240073 321 21 lll ll Solve the above set of equations, we have: 87l 12991 21322 1 l l 3 T12991213287L Conclusion 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 103
File đính kèm:
- bai_giang_fundamentals_of_control_systems_chapter_6_design_o.pdf