Bài giảng Computer graphics and virtual reality - Lesson 1: Kỹ thuật đồ họa và Hiện thực ảo
A Brief History of Computer
Graphics
1885 - CRT (Cathode Ray Tube)
1887 - Edison patents motion
picture camera
1888 - Edison and Dickson
record motion picture photos
on a wax cylinder
erty G U I MODELING RENDERING DISPLAYING what is a table, a car, • • • ( to describe) to the computer Geometric Engine (to capture) the description create 2D image from 2D / 3D models Rendering Engine generate image on screen (to show) the image Raster & Display Engine concerned with : - viewing & projection - drawing & clipping primitives - local illumination & shading - texture mapping Thành phần trong chức năng của kỹ thuật đồ hoạ 42 3D Graphics Over World Wide Web SRGP library Pascal / C program X Window System Graphics hardware Image image formats, compression, transfer graphics algorithms colour Drawing packages transformation of objects 3D Graphics projections lighting,shading lines,areas,...positions Video WWW Animation WWW VRML Khoa CNTT - ĐHBK Hà nội Email: hunglt@it-hut.edu.vn Tel: 0913030731 8 43 Các chuẩn giao diện của hệ đồ hoạ z GKS (Graphics Kernel System): chuẩn xác định các hàm đồ hoạ chuẩn, được thiết kế như một tập hợp các công cụ đồ hoạ hai chiều và ba chiều. – GKS Functional Description, ANSI X3.124 - 1985. – GKS - 3D Functional Description, ISO Doc #8805:1988. z CGI (Computer Graphics Interface System): hệ chuẩn cho các phương pháp giao tiếp với các thiết bị ngoại vi. z CGM (Computer Graphics Metafile): xác định các chuẩn cho việc lưu trữ và chuyển đổi hình ảnh. z VRML (Virtual Reality Modeling Language): ngôn ngữ thực tại ảo, một hướng phát triển trong công nghệ hiển thị được đề xuất bởi hãng Silicon Graphics, sau đó đã được chuẩn hóa như một chuẩn công nghiệp. z PHIGS (Programmers Hierarchical Interactive Graphics Standard): xác định các phương pháp chuẩn cho các mô hình thời gian thực và lập trình hướng đối tượng. – PHIGS Functional Description, ANSI X3.144 - 1985. – PHIGS+ Functional Description, 1988, 1992. 44 Non-official industry standards Các chuẩn của hệ đồ hoạ z OPENGL thư viện đồ họa của hãng Silicon Graphics, được xây dựng theo đúng chuẩn của một hệ đồ họa. – SGI’s OpenGL 1993 z DIRECTX thư viện đồ hoạ của hãng Microsoft – Direct X/Direct3D 1997 45 OpenGL z Software interface to graphics hardware z Client-server model z 250 distinct commands z Object specification + image generation z Simple primitives: points, lines, polygons (pixels, images, bitmaps) z 3D rendering z Commands interpreted using client-server model – Client (Application) issues commands – Server (OpenGL) interprets and processes commands – Frame buffer configuration done by the window system 46 z Window tasks z User input z Complicated shapes – OpenGL Utility Library (GLU) – Window system support libraries z GLX / WGL / PGL – OpenGL Utility Toolkit (GLUT) – OpenInventor For portability, there are no commands for these. OpenGL-related Libraries 47 z Direct control of graphics hardware z Direct control of input/output devices, and sound Application programApplication progra Windows systemindows syste Direct sound Direct draw Direct 3D Direct input Windows APIindows API Direct X .. DirectX 48 OpenGL Design Goals z SGI’s design goals for OpenGL: – High-performance (hardware-accelerated) graphics API – Some hardware independence – Natural, terse API with some built-in extensibility z OpenGL has become a standard (competing with DirectX) because: – It doesn’t try to do too much z Only renders the image, doesn’t manage windows, etc. z No high-level animation, modeling, sound (!), etc. – It does enough z Useful rendering effects + high performance – Open source and promoted by SGI (& Microsoft, half-heartedly) Khoa CNTT - ĐHBK Hà nội Email: hunglt@it-hut.edu.vn Tel: 0913030731 9 49 Màn hình CRT Raster Displays (early 70s) like television, scan all pixels in regular pattern use frame buffer (video RAM) to eliminate sync problems RAM ¼ MB (256 KB) cost $2 million in 1971 50 Màn hình CRT SONY Trinitron CRT NEC Hybrid Mask Hitachi EDP Standard Dot-trio 51 Display Technology: Raster CRTs z Raster CRT pros: – Allows solids, not just wireframes – Leverages low-cost CRT technology (i.e., TVs) – Bright! Display emits light z Cons: – Requires screen-size memory array – Discreet sampling (pixels) – Practical limit on size (call it 40 inches) – Bulky – Finicky (convergence, warp, etc) 52 Các thiết bị hiển thị dạng điểm 53 CRT Displays Advantages z Fast repsonse (high resolution possible) z Full color (large modulation depth of E-beam) z Saturated and natural colors z Inexpensive, matured technology z Wide angle, high contrast and brightness Disadvantages z Large and heavy (typ. 70x70 cm, 15 kg) z High power consumption (typ. 140W) z Harmful DC and AC electric and magnetic fields z Flickering at 50-80 Hz (no memory effect) z Geometrical errors at edges 54 LCD-Liquid Crystal Display z A transmissive technology z Works by letting varying amounts of a fixed-intensity white backlight through an active filter z Organnic crystals that lign themselves together z When external force is applied they realign themselves z This is used to change polarisation and filter light Khoa CNTT - ĐHBK Hà nội Email: hunglt@it-hut.edu.vn Tel: 0913030731 10 55 Display Technology: LCDs z Transmissive & reflective LCDs: – LCDs act as light valves, not light emitters, and thus rely on an external light source. – Laptop screen: backlit, transmissive display – Palm Pilot/Game Boy: reflective display 56 LCD Displays Advantages z Small footprint (approx 1/6 of CRT) z Light weight (typ. 1/5 of CRT) z Low power consumption (typ. 1/4 of CRT) z Completely flat screen - no geometrical errors z Crisp pictures - digital and uniform colors z No electromagnetic emission z Fully digital signal processing possible z Large screens (>20 inch) on desktops Disadvantages z High price (presently 3x CRT) z Poor viewing angle (typ. +/- 50 degrees) z Low contrast and luminance (typ. 1:100) z Low luminance (typ. 200 cd/m2) 57 Màn hình Plasma z Plasma display panels – Similar in principle to fluorescent light tubes – Small gas-filled capsules are excited by electric field, emits UV light – UV excites phosphor – Phosphor relaxes, emits some other color 58 Display Technology z Plasma Display Panel Pros – Large viewing angle – Good for large-format displays – Fairly bright z Cons – Expensive – Large pixels (~1 mm versus ~0.2 mm) – Phosphors gradually deplete – Less bright than CRTs, using more power 59 Display Technology: DMDs z Digital Micromirror Devices (projectors) – Microelectromechanical (MEM) devices, fabricated with VLSI techniques 60 Display Technology: DMDs z DMDs are truly digital pixels z Vary grey levels by modulating pulse length z Color: multiple chips, or color-wheel z Great resolution z Very bright z Flicker problems Khoa CNTT - ĐHBK Hà nội Email: hunglt@it-hut.edu.vn Tel: 0913030731 11 61 Màn hình hữu cơ Organic LED Arrays z Organic Light-Emitting Diode (OLED) Arrays – The display of the future? – OLEDs hoạt động tương tự cơ chế của LEDs bán dẫn z Cấu trúc là màng chất dẻo mỏng: – Màng film cấu tạo bởi các phần tử hữu cơ, các phân tử phát sáng bởi sự thăng hoa khí trong môi trường chân không – Mầu sắc được tạo thành từ các lớp mầu gồm các phân tử huỳnh quang được kích thích. – Mịn, không to như các hạt tinh thể và không phát nhiệt – Có thể tạo màn hình rộng loại OLEDs 62 Display Technologies: Organic LED Arrays z OLED pros: – Transparent – Flexible – Light-emitting, and quite bright (daylight visible) – Large viewing angle – Fast (< 1 microsecond off- on-off) – Can be made large or small 63 Display Technologies: Organic LED Arrays z OLED cons: – Not quite there yet (96x64 displays) except niche markets z Cell phones (especially back display) z Car stereos – Not very robust, display lifetime a key issue – Currently only passive matrix displays z Passive matrix: Pixels are illuminated in scanline order (like a raster display), but the lack of phosphorescence causes flicker z Active matrix: A polysilicate layer provides thin film transistors at each pixel, allowing direct pixel access and constant illumination See for more info – Hard to compete with LCDs, a moving target 64 DAC Direct Color Framebuffer z Store the actual intensities of R, G, and B individually in the framebuffer z 24 bits per pixel = 8 bits red, 8 bits green, 8 bits blue – 16 bits per pixel = ? bits red, ? bits green, ? bits blue 65 Color Lookup Framebuffer z Store indices (usually 8 bits) in framebuffer z Display controller looks up the R,G,B values before triggering the electron guns Frame Buffer DAC Pixel color = 14 Color Lookup Table 0 1024 14 R G B 66 Framebuffers: True-Color z A true-color ( 24-bit or 32-bit) framebuffer stores one byte each for red, green, and blue z Each pixel can thus be one of 224 colors z Pay attention to Endian-ness z How can 24-bit and 32-bit mean the same thing here? Khoa CNTT - ĐHBK Hà nội Email: hunglt@it-hut.edu.vn Tel: 0913030731 12 67 Framebuffers: Indexed-Color z An indexed-color (8-bit or PseudoColor) framebuffer stores one byte per pixel (also: GIF image format) z This byte indexes into a color map: z How many colors can a pixel be? z Still common on low-end displays (cell phones, PDAs, GameBoys) z Cute trick: color-map animation 68 Framebuffers: Hi-Color z Hi-Color was a popular PC SVGA standard z Packs pixels into 16 bits: – 5 Red, 6 Green, 5 Blue – Sometimes just 5,5,5 z Each pixel can be one of 216 colors z Hi-color images can exhibit worse quantization artifacts than a well-mapped 8-bit image 69 – X : 0 ÷ Xmax 2 màu/ 1 bit – Y : 0 ÷ Ymax 16 màu/ 4 bit – 256 màu/ 8bit – 216 màu/ 16 bit – 224 màu/ 24 bit – 640 × 480 × 16 → Video RAM = 2MB – 1024 × 1024 × 24 → Video RAM = 24MB
File đính kèm:
- bai_giang_computer_graphics_and_virtual_reality_lesson_1_ky.pdf